GLUTEN AND GLUTEN-FREE BISCUITS WITH FUNCTIONAL COMPONENTS: PHYSICOCHEMICAL, NUTRITIONAL AND ANTIOXIDANT PROPERTIES

Original scientific paper

Authors

  • Marija Menkinoska Faculty of Technology, Goce Delcev University, Stip, North Macedonia
  • Tatjana Pavlova Zan Mitrev Clinic, Skopje, North Macedonia
  • Zhivka Goranova Agricultural Academy, Department of Food Technology, Institute of Food Preservation and Quality, Plovdiv, Bulgaria
  • Angelina Sredovska Bozhinov International Balkan University, Faculty of Dental Medicine, Skopje, North Macedonia
  • Zlatin Zlatev Trakia University, Faculty of Technics and Technologies, Yambol, Bulgaria
  • Hyrije Koraqi Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Pristina, Kosovo
  • Anka Trajkoska Petkoska University St Kliment Ohridski Bitola, Faculty of Technology and Technical Sciences – Veles, Veles, North Macedonia and Department of Materials Science and Engineering, Korea University, Seoul, South Korea

DOI:

https://doi.org/10.2298/CICEQ241014021M

Keywords:

Antioxidant activity, polyphenol content, biscuits, gluten-free biscuits

Abstract

This study aims to determine the effect of different compounds on the nutritional, antioxidant, microstructural, and color characteristics of biscuits classified as gluten and gluten-free. Namely, biscuits are enriched with dietary fibers, acacia fibers, spent coffee grounds, and anthocyanins. The addition of these functional components to biscuit matrix affected the physical properties of the biscuits; namely, the spread factor value of all biscuits ranged from 2.98 to 7.88, the content of total polyphenols increased, the highest polyphenol content was obtained in the gluten-free biscuits with added coffee grounds (77.98 mg), while in the biscuits with wheat flour has in the range of 44.62–128.63 mg. All gluten-free biscuits can be labeled as products with "rich in fiber" (6.32–7.68 g/100 g) and with a higher antioxidant content compared to biscuits without added ingredients. The total number of microorganisms in the tested cookies is below acceptable limits. The findings of this study show that the inclusion of raw nutritional components in the recipe of traditional gluten and gluten-free biscuits leads to an improvement in the nutritional value and other quality characteristics of the fortified food products.

References

[1] M. Siol, A. Sadowska, Agriculture 13 (2023) 316. https://doi.org/10.3390/agriculture13020316.

[2] M. Ferreira, L. Santos, Food Biosci. 51 (2023) 102293. https://doi.org/10.1016/j.fbio.2022.102293.

[3] A. Babazadeh, F. Mohammadi Vahed, Q. Liu, S.А. Siddiqui, M.S. Kharazmi, S.M. Jafari, ACS Omega 8 (2023) 3667-3683. https://doi.org/10.1021/acsomega.2c06098.

[4] T. Varzakas, S. Smaoui, Foods 13 (2024) 306. https://doi.org/10.3390/foods13020306.

[5] A. Nartea, B. Fanesi, D. Pacetti, L. Lenti, D. Fiorini, P. Lucci, N.G. Frega, P.M. Falcone, Curr. Res. Food Sci. (2023) 100437. https://doi.org/10.1016/j.crfs.2023.100437.

[6] S. Nardella, A. Conte, M.A. Del Nobile Foods 11 (2022) 665. https://doi.org/10.3390/foods11050665.

[7] S.M. Ferreira, S.M. Gomes, L. Santos, Food Bioprod. Process. 15 (2024) 2721-2733. https://doi.org/10.1007/s12649-023-02366-3

[8] A. Wirkijowska, P. Zarzycki, D. Teterycz, A. Nawrocka, A. Blicharz-Kania, P. Łysakowska, Appl. Sci. 13 (2023) 9312. https://doi.org/10.3390/app13169312.

[9] V. Šimora, H. Dúranová, J. Brindza, M. Moncada, E. Ivanišová, P. Joanidis, D. Straka, L. Gabríny, M. Kačániová, Foods 12 (2023) 593. https://doi.org/10.3390/foods12030593.

[10] A. Kumar, K. Elavarasan, M.D. Hanjabam, P.K. Binsi, C.O. Mohan, A.A. Zynudheen, A.K. Less, Agric. Food Sci. 109 (2019) 450-456. https://doi.org/10.1016/J.LWT.2019.04.052.

[11] I.D. Soares, M.E.M. Cirilo, I.G. Junqueira, F.M. Vanin, C.E.d.C. Rodrigues, Foods 12 (3) (2023) 436. https://doi.org/10.3390/foods12030436

[12] D. Pinto, M.M. Moreira, E.F. Vieira, J. Švarc-Gajić, A. Vallverdú-Queralt, T. Brezo-Borjan, C. Delerue-Matos, F. Rodrigues, Foods 12 (3) (2023) 640. https://doi.org/10.3390/foods12030640.

[13] Т. Ferreira, S.M. Gomes, L. Santos, Antioxidants 12 (12) (2023) 2069. https://doi.org/10.3390/antiox12122069.

[14] M. Goubgou, L.T. Songré-Ouattara, F. Bationo, H. Lingani-Sawadogo, Y. Traoré, A. Savadogo, Food Prod Process Nutr. 3 (1) (2021) 26. https://doi.org/10.1186/s43014-021-00071-z

[15] S. Bolek, Innovative Food Sci. Emerging Technol. 64 (2020) 102423. https://doi.org/10.1016/j.ifset.2020.102423.

[16] S. Mildner-Szkudlarz, R. Zawirska-Wojtasiak, W. Obuchowski, M. Gośliński, J. Food Sci. 74 (2009) S362-S370. https://doi.org/10.1111/j.1750-3841.2009.01313.x.

[17] M. Cervini, A. Frustace, G. Garrido, G. Rocchetti, G. Giuberti, Heliyon 7 (2021) e06562. https://doi.org/10.1016/j.heliyon.2021.e06562.

[18] D. Kohli, A. Jain, O. Singh, S. Kumar, J. Agric. Food Res. 14 (2023) 100683. https://doi.org/10.1016/j.jafr.2023.100683.

[19] A.M. Sharoba, A.M. Abd El-Salam, H.H. Hafez, J. Agroaliment. Process. Technol. 20 (3) (2014) 203–214. http://journal-of-agroalimentary.ro/

[20] S. Moradi Marnilo, M.S. Yarmand, M. Salami, M.A. Aliyari, Z. Emam-Djomeh, Y.S. Mostafavi, J. Food Process. Agric. Food Sci. 2023 (2023) 4923259. https://doi.org/10.1155/2023/4923259

[21] L. Hopkin, H. Broadbent, G.J. Ahlborn, Food Chem. X. 13 (2022) 100182. https://doi.org/10.1016/j.fochx.2021.100182.

[22] V. Bringas-González, L.A. Bello-Pérez, A. Contreras-Oliva, M. López-Espíndola, J.A. Herrera-Corredor, J. Food Process. Preserv. 46 (2022) e16791. https://doi.org/10.1111/jfpp.16791.

[23] M. Iancu, J. Agroaliment. Processes Technol. 27 (2021) 164-171. http://journal-of-agroalimentary.ro/

[24] Y. Elhassaneen, Y. Elhady, N. Mohamed, Life Sci. J. 11 (2014) 385-393. https://www.researchgate.net/publication/287308501.

[25] A. Pasqualone, A.M. Bianco, V.M. Paradiso, C. Summo, G. Gambacorta, F. Caponio, A. Blanco, Food Chem. 180 (2015) 64-70. https://doi.org/10.1016/j.foodchem.2015.02.025.

[26] F. Artés-Hernández, L. Martínez-Zamora, M. Cano-Lamadrid, S. Hashemi, N. Castillejo, Foods 12 (3) (2023) 561. https://doi.org/10.3390/foods12030561.

[27] A. Gupta, N. Sanwa, M.A. Baren, S. Barua, N. Sharma, O.J. Olatunji, N.P. Nirma, J.K. Sahu, Food Res. Int. 170 (2023) 113046. https://doi.org/10.1016/j.foodres.2023.113046.

[28] E.B. Giuntini, F.A. Hoffmann Sardá, E.W. de Menezes, Foods 11 (23) (2022) 3934. https://doi.org/10.3390/foods11233934.

[29] A. Azuan, Z. Mohd Zin, M. Hasmadi, N. Rusli, M. Zainol, Food Res. 4 (2020) 1181-1190. https://doi.org/10.26656/fr.2017.4(4).058.

[30] T. Klingel, J.I. Kremer, V. Gottstein, T. Rajcic de Rezende, S. Schwarz, D.W. Lachenmeier, Foods 9 (2020) 665. https://doi.org/10.3390/foods9050665.

[31] K. Socała, A. Szopa, A. Serefko, E. Poleszak, P. Wlaź, Int. J. Mol. Sci. 22 (2020) 1. https://doi.org/10.3390/ijms22010107.

[32] R.R. Ahmed, N.K. Alqahtani, K.M.A. Ramadan, H.I. Mohamed, M.A.A. Mahmoud, H.O. Elkatry, ACS Omega 8 (2023) 33593-33609. https://doi.org/10.1021/acsomega.3c03747.

[33] A.M.A. Elnour, N.H. Abdurahman, K.H. Musa, Z. Rasheed, Int J Health Sci (Qassim). 17 (2023) 4–5. https://pubmed.ncbi.nlm.nih.gov/37929233/.

[34] A. Pasqualone, A. Bianco, V. Paradiso, CyTA – J. Food 11 (2013) 301-308.

https://doi.org/10.1080/19476337.2012.753113.

[35] N. Chopra, B. Dhillon, S. Puri, Int. J. Adv. Biotechnol. Res. 5 (2014) 381-387. https://www.researchgate.net/publication/264943169.

[36] A. Chauhan, D. Saxena, S. Singh, LWT – Food Sci. Technol. 63 (2015) 939-945.

https://doi.org/10.1016/j.lwt.2015.03.115.

[37] D. Palatnik, M. Porcel, U. González, N. Zaritzky, M. Campderrós, LWT – Food Sci. Technol. 63 (2015) 939-945. https://doi.org/10.1016/j.lwt.2015.03.115.

[38] Approved methods of the American Association of Cereal Chemists, AACC methods (2000) 42-10, 42-11 and 42-50, 10th edn. St. Paul, Minnesota. https://www.cerealsgrains.org/resources/methods/Pages/default.aspx.

[39] Y. Wang, G. Ryu, J. Cereal Sci. 58 (2013) 110-116. https://doi.org/10.1016/j.jcs.2013.03.013.

[40] R. Alrahmany, T. Avis, A. Tsompo, Food Res. Int. 52 (2013) 568-574. https://doi.org/10.1016/j.foodres.2013.03.03.

[41] G.I. Onwuka, Food Analysis and Instrumentation: Theory and Practice, Naphthali Prints, Lagos, (2005) p. 133.

[42] M. Mladenov, J. Food Nutr. Res. 59 (2020) 108-119. https://www.researchgate.net/publication/342230957.

[43] J. Ou, M. Wang, J. Zheng, S. Ou, Food Chem. 298 (2019) 90-99. https://doi.org/10.1016/j.foodchem.2019.01.096.

[44] A. Patras, N.P. Brunton, C.O’Donnell, B.K. Tiwari, Food Sci. Technol. 21 (2010) 3-11. https://doi.org/10.1016/j.tifs.2009.07.004.

[45] A.M. Sinela, C. Mertz, N. Achir, N. Rawat, K. Vidot, H. Fulcrand, M. Dornier, Food Chem. 235 (2017) 67-75. https://doi.org/10.1016/j.foodchem.2017.05.027.

[46] P. Matilla, J.M. Pihlava, J. Hellstrom, J. Agric. Food Chem. 53 (2005) 8290-8295. https://doi.org/10.1021/jf051437z.

[47] E.S.M. Abdel-Aal, I. Rabalski, J. Cereal Sci. 57 (2013) 312-31. https://doi.org/10.1016/j.jcs.2012.12.001.

[48] M. Olszowy, Plant Physiol. Biochem. 144 (2019) 135-143. https://doi.org/10.1016/j.plaphy.2019.09.039.

[49] R. Murugesan, V. Orsat, Drying Technol. 29 (2011) 1729-1740. https://doi.org/10.1080/07373937.2011.602485.

[50] S. Santhalakshmy, S.J. Don Bosco, S. Francis, M. Sabeena, Powder Technol. 274 (2015) 37-43. https://doi.org/10.1016/j.powtec.2015.01.016.

[51] K.Y. Abboud, B.B. da Luz, J.L. Dallazen, M.F. de P. Werner, C.B.B. Cazarin, M.R. Maróstica Junior, M. Iacomini, L.M.C. Cordeiro, J. Funct. Foods 54 (2019) 552-558. https://doi.org/10.1016/j.jff.2019.02.003.

[52] European Parliament & Council of the European Union, Regulation (2006), J. Eur. Union, 304 (2006) 18-63.

Downloads

Published

— Updated on 17.07.2025

Issue

Section

Articles

How to Cite

GLUTEN AND GLUTEN-FREE BISCUITS WITH FUNCTIONAL COMPONENTS: PHYSICOCHEMICAL, NUTRITIONAL AND ANTIOXIDANT PROPERTIES: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241014021M

Similar Articles

11-20 of 60

You may also start an advanced similarity search for this article.