COMPARATIVE ANALYSIS OF MORINGA OIL AND RUBBER SEED OIL BIODIESELS IN DIESEL ENGINES

Original scientific paper

Authors

  • Venkatesan Subramanian Department of Mechanical Engineering, Sri Venkateswara College of Engineering, Tamil Nadu, India
  • Raghu Palani Department of Mechanical Engineering, Sri Venkateswara College of Engineering, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ241211018P

Keywords:

Biodiesel, Biodiesel, diesel engine, alternative fuel, moringa oil, rubber seed oil, emissions

Abstract

Energy resources are diminishing, and environmental problems are becoming more prevalent. In this regard, biodiesel from moringa oil (MO) and rubber seed oil (RSO) promises to be an excellent alternative to diesel fuels, while also requiring far less modification from existing diesel engines. Performance metrics analysis reveals that biodiesel consumes a slightly higher amount of fuel at lower loads because of its relatively lower calorific value. At 4.4 kW, MO methyl ester blend (MO20) achieved a brake thermal efficiency of 30%, outperforming diesel (26%) and RSO methyl ester blend (RB20) achieved a brake thermal efficiency of 28%. MO20 reduced CO emissions by 60% compared to diesel and 55% compared to RB20. Furthermore, MO20 increased NOx emissions by 10% at higher brake power levels compared to RB20 and 20% for diesel. RB20 and MO20 biodiesel blends exhibit lower HC compared to diesel by 24% and 28% respectively. These reductions in carbon monoxide and hydrocarbon emissions make biodiesel blends, mostly from MO, cleaner and well sustainable compared to conventional diesel, with their environmental and performance benefits for diesel engine applications.

References

[1] . N.R. Abdullah, M.S.M. Zaharin, A.M.I. Mamat, M.R.M. Nawi, H. Sharudin, J. Technol. 76(11) (2015) 107–112. https://doi.org/10.11113/jt.v76.5920.

[2] D. Agarwal, A.K. Agarwal, Appl. Therm. Eng. 27(13) (2007) 2314–2323. https://doi.org/10.1016/j.applthermaleng.2007.01.009.

[3] A.K. Azad, M.G. Rasul, M.M.K. Khan, S.C. Sharma, R. Islam, Procedia Eng. 105 (2015) 601–606. https://doi.org/10.1016/j.proeng.2015.05.037.

[4] S.C.A. De Almeida, C. Rodrigues Belchior, M.V.G. Nascimento, L. Dos, S.R. Vieira, G. Fleury, Fuel 81(16) (2002) 2097–2102. https://doi.org/10.1016/S0016-2361(02)00155-2.

[5] F. Hussain, M.E.M. Soudagar, A. Afzal, M.A. Mujtaba, I.M. Rizwanul Fattah, B. Naik, B.M.H. Mulla, I.A. Badruddin, T.M. Yunus Khan, V.D. Raju, R.S. Gavhane, S.M. Ashrafur Rahman, Energies 13(17) (2020) 4578. https://doi.org/10.3390/en13174578.

[6] S. Jindal, B.P. Nandwana, N.S. Rathore, V. Vashistha, Appl. Therm. Eng. 30(5) (2010) 442–448. https://doi.org/10.1016/j.applthermaleng.2009.10.004.

[7] V. Karthickeyan, Fuel 235 (2019) 538–550. https://doi.org/10.1016/j.fuel.2018.08.030.

[8] B. Kathirvelu, S. Subramanian, Environ. Eng. Res. 22 (2017) 294–301. https://doi.org/10.4491/eer.2016.145.

[9] S. Murillo, J.L. Miguez, J. Porteiro, E. Granada, J.C. Moran, Fuel 86 (2007) 1765–1771. https://doi.org/10.1016/j.fuel.2006.11.031.

[10] A.N. Ozsezen, M. Canakci, Energy Convers. Manage. 52 (2011) 108–116. https://doi.org/10.1016/j.enconman.2010.06.049.

[11] A.S. Ramadhas, S. Jayaraj, C. Muraleedharan, Renew. Energy 30 (2005) 795–803. https://doi.org/10.1016/j.renene.2004.07.002.

[12] P. Raghu, R. Sundarrajan, R. Rajaraman, M. Ramaswamy, S. Sathyanaryanan, Int. J. Veh. Struct. Syst. 12 (2020) 82. https://doi.org/10.4273/ijvss.12.1.18.

[13] K. Rajan, R. Pradeepraj, Int. J. Innov. Technol. Explor. Eng. 9 (2020) 1783–1786. https://doi.org/10.35940/ijitee.B7242.019320.

[14] S. Rajaraman, G.K. Yashwanth, T. Rajan, R. Siva Kumaran, P. Raghu, Proc. ASME Int. Mech. Eng. Congr. Expo. 2009 Volume 3: Combustion Science and Engineering, 13–19, (2009) pp. 27-34. https://doi.org/10.1115/IMECE2009-11265.

[15] A.S. Ramadhas, C. Muraleedharan, S. Jayaraj, Renewable Energy 30 (2005) 1789–1800. https://doi.org/10.1016/j.renene.2005.01.009.

[16] S. Ramalingam, N.V. Mahalakshmi, RSC Adv. 10 (2020) 4274–4285. https://doi.org/10.1039/c9ra09582a.

[17] M.M. Rashed, M.A. Kalam, H.H. Masjuki, M. Mofijur, M.G. Rasul, N.W.M. Zulkifli. Ind. Crops Prod. 79 (2016) 70–76. https://doi.org/10.1016/j.indcrop.2015.10.046.

[18] U. Rashid, F. Anwar, B.R. Moser, G. Knothe, Bioresour. Technol. 99 (2008) 8175–8179. https://doi.org/10.1016/j.biortech.2008.03.066.

[19] M. Salaheldeen, M.K. Aroua, A.A. Mariod, S.F. Cheng, M.A. Abdelrahman, A.E. Atabani, Energy Convers. Manage. 92 (2015) 535–542. https://doi.org/10.1016/j.enconman.2014.12.087.

[20] S. Saravanan, G. Nagarajan, G. Lakshmi Narayana Rao, S. Sampath, Energy 35 (2010) 94-100. https://doi.org/10.1016/j.energy.2009.08.029.

[21] S. Sivalakshmi and T. Balusamy, Int. J. Ambient Energy 32 (2011) 170–178. https://doi.org/10.1080/01430750.2011.625717.

[22] M.E.M. Soudagar, H.M. Khan, T.M. Yunus Khan, L. Razzaq, T. Asif, M.A. Mujtaba, A. Hussain, M. Farooq, W. Ahmed, K. Shahapurkar, A. Alwi, T.M. Ibrahim, U. Ishtiaq, A. Elfasakhany, M.A.A. Baig, M.S. Goodarzi, M.R. Safaei, Appl. Sci. 11 (2021) 7071. https://doi.org/10.3390/app11157071.

[23] P. Tamilselvan, N. Nallusamy, S. Rajkumar, Renew. Sustain. Energy Rev. 79 (2017) 1134–1159. https://doi.org/10.1016/j.rser.2017.05.176.

[24] B.K. Venkanna, C.V. Reddy, Int. J. Energy Technol. Policy 9 (2013) 1–14. https://doi.org/10.1504/IJETP.2013.055813.

[25] A.K. Agarwal, Renew. Sustain. Energy Rev. 150 (2022) 111551. https://doi.org/10.1016/j.rser.2021.111551.

[26] A. Demirbas, Energy Convers. Manag. 226 (2021) 113528. https://doi.org/10.1016/j.enconman.2020.113528.

[27] U. Rashid, Bioresour. Technol. 351 (2022) 126891. https://doi.org/10.1016/j.biortech.2022.126891.

Downloads

Published

— Updated on 05.07.2025

Issue

Section

Articles

How to Cite

COMPARATIVE ANALYSIS OF MORINGA OIL AND RUBBER SEED OIL BIODIESELS IN DIESEL ENGINES: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241211018P

Similar Articles

11-20 of 47

You may also start an advanced similarity search for this article.