ONE—STEP CONVERSION OF ETHANE TO ETHYLENE OXIDE IN AC PARALLEL PLATE DIELECTRIC BARRIER DISCHARGE Original scientific paper

Main Article Content

Thitiporn Suttikul
Sirimas Manthung
Sasikarn Nuchdang
https://orcid.org/0000-0002-0201-3214
Dussadee Rattanaphra
https://orcid.org/0000-0002-1739-5294
Thongchai Photsathian

Abstract

This work studied the one-step conversion of ethane (C2H6) to ethylene oxide (EO) in an AC parallel plate dielectric barrier discharge (DBD) system with two frosted glass plates under ambient temperature and atmospheric pressure. EO is directly produced from C2H6 in a single step without the requirement to separate and recycle ethylene. The effects of the applied voltage, input frequency, and O2/C2H6 feed molar ratio on the EO synthesis performance were examined. The results showed that a higher applied voltage and lower input frequency generated more highly energetic electrons, resulting in a higher current. More electrons collided with reactant gas molecules to initiate plasma reactions, increasing C2H6 and O2 conversions. The increased O2/C2H6 feed molar ratio enhanced C2H6 and O2 conversions. The optimum conditions were found to be an applied voltage of 7 kV, input frequency of 550 Hz, and O2/C2H6 feed molar ratio of 1:1, which demonstrated the highest EO selectivity (42.6%), EO yield (19.4%), and lowest power consumption per EO molecule produced (6.7 x 10-18 Ws/molecule).

Article Details

How to Cite
Suttikul, T. ., Manthung, S. ., Nuchdang, S. ., Rattanaphra, D. ., & Photsathian, T. . (2024). ONE—STEP CONVERSION OF ETHANE TO ETHYLENE OXIDE IN AC PARALLEL PLATE DIELECTRIC BARRIER DISCHARGE: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(3), 231–241. https://doi.org/10.2298/CICEQ230228026S
Section
Articles

References

H. Alzahrani, J. Bravo-Suárez, J. Catal. 418 (2023) 225—236. https://doi.org/10.1016/j.jcat.2023.01.016.

G. Boskovic, D. Wolf, A. Brückner, M. Baerns, J. Catal. 224 (2004) 187—196. https://doi.org/10.1016/j.jcat.2004.02.030.

A. Talati, M. Haghighi, F. Rahmani, Adv. Powder Technol. 27 (2016) 1195—1206. https://doi.org/10.1016/j.apt.2016.04.003.

J.M. Hollis, F.J. Lovas, P.R. Jewell, L.H. Coudert, Astrophys. J. 571 (2002) L59. https://iopscience.iop.org/article/10.1086/341148.

T. Salmi, M. Roche, J. Hernández Carucci, K. Eränen, D. Murzin, Curr. Opin. Chem. Eng. 1 (2012) 321—327. https://doi.org/10.1016/j.coche.2012.06.002.

S. Dolmaseven, N. Yuksel, M.F. Fellah, Sens. Actuators, A 350 (2023) 114109. https://doi.org/10.1016/j.sna.2022.114109.

T. Pu, H. Tian, M.E. Ford, S. Rangarajan, I.E. Wachs, ACS Catal. 9 (2019) 10727—10750. https://doi.org/10.1021/acscatal.9b03443.

W. Diao, C.D. DiGiulio, M.T. Schaal, S. Ma, J.R. Monnier, J. Catal. 322 (2015) 14—23. http://dx.doi.org/10.1016/j.jcat.2014.11.007.

C.-J. Chen, J.W. Harris, A. Bhan, Chem. Eur. J. 24 (2018) 12405—12415. https://doi.org/10.1002/chem.201801356.

A. Alamdari, R. Karimzadeh, S. Abbasizadeh, Rev. Chem. Eng. 37 (2021) 481—532. https://doi.org/10.1515/revce-2017-0109.

P.H. Keijzer, J.E. van den Reijen, C.J. Keijzer, K.P. de Jong, P.E. de Jongh, J. Catal. 405 (2022) 534—544. https://doi.org/10.1016/j.jcat.2021.11.016.

Y. Wu, A. Yan, Y. He, B. Wu, T. Wu, Catal. Today 158 (2010) 258—262. https://doi.org/10.1016/j.cattod.2010.03.041.

J. Gao, D. Zhou, Y. Wu, T. Wu, Catal. Commun. 30 (2013) 51—55. http://dx.doi.org/10.1016/j.catcom.2012.10.023.

A. Fridman, A. Gutsol, Y.I. Cho, Adv. Heat Transfer 40 (2007) 1—142. https://doi.org/10.1016/S0065-2717(07)40001-6.

D. Li, V. Rohani, F. Fabry, A. Parakkulam Ramaswamy, M. Sennour, L. Fulcheri, Appl. Catal., B 261 (2020) 118228. https://doi.org/10.1016/j.apcatb.2019.118228.

Y.P. Zhang, Y. Li, Y. Wang, C.J. Liu, B. Eliasson, Fuel Process. Technol. 83 (2003) 101—109. http://dx.doi.org/10.1016/S0378-3820(03)00061-4.

Y. Li, C.J. Liu, B. Eliasson, Y. Wang, Energy Fuels 16 (2002) 864—870. https://doi.org/10.1021/ef0102770.

B. Lee, E.S. Jo, I. Heo, T.-H. Kim, D.-W. Park, Chem. Eng. Process.179 (2022) 109070. https://doi.org/10.1016/j.cep.2022.109070.

U.H. Dahiru, F. Saleem, F.T. Al-sudani, K. Zhang, A.P. Harvey, Chem. Eng. Process.178 (2022) 109035. https://doi.org/10.1016/j.cep.2022.109035.

S. Li, Y. Li, X. Yu, X. Dang, X. Liu, L. Cao, J. Clean. Prod. 368 (2022) 133073. https://doi.org/10.1016/j.jclepro.2022.133073.

Y. Zhang, H. Zhang, A. Zhang, P. Héroux, Z. Sun, Y. Liu, Chem. Eng. J. 458 (2023) 141406. https://doi.org/10.1016/j.cej.2023.141406.

C.A. Aggelopoulos, D. Tataraki, G. Rassias, Chem. Eng. J. 347 (2018) 682—694. https://doi.org/10.1016/j.cej.2018.04.111.

J. Sima, J. Wang, J. Song, X. Du, F. Lou, Y. Pan, Q. Huang, C. Lin, Q. Wang, G. Zhao, Chemosphere 317 (2023) 137815. https://doi.org/10.1016/j.chemosphere.2023.137815. http://www.ijma.info/index.php/ijma/article/view/1854.

T. Sreethawong, T. Suwannabart, S. Chavadej, Plasma Chem. Plasma Process. 28 (2008) 629—642. https://doi.org/10.1007/s11090-008-9149-8.

T. Suttikul, S. Yaowapong-aree, H. Sekiguchi, S. Chavadej, J. Chavadej, Chem. Eng. Process. 70 (2013) 222—232. https://doi.org/10.1016/j.cep.2013.03.018.

T. Suttikul, B. Paosombat, M. Santikunaporn, M. Leethochawalit, S. Chavadej, Ind. Eng. Chem. 53 (2014) 3778—3786. https://doi.org/10.1021/ie402659c.

T. Suttikul, S. Kodama, H. Sekiguchi, S. Chavadej, Plasma Chem. Plasma Process. 34 (2014) 187—205. https://doi.org/10.1007/s11090-013-9492-2.

S. Chavadej, W. Dulyalaksananon, T. Suttikul, Chem. Eng. Process.107 (2016) 127—137. http://dx.doi.org/10.1016/j.cep.2016.05.010.

X. Zhang, A. Zhu, X. Li, W. Gong, Catal. Today 89 (2004) 97—102. https://doi.org/10.1016/j.cattod.2003.11.015.

F. Cameli, P. Dimitrakellis, G.D. Stefanidis, D.G. Vlachos, Plasma Chem. Plasma Process. (2023). https://doi.org/10.1007/s11090-023-10343-w.

T. Suttikul, C. Tongurai, H. Sekiguchi, S. Chavadej, Plasma Chem. Plasma Process. 32 (2012) 1169—1188. https://doi.org/10.1007/s11090-012-9398-4.

C. Liu, A. Marafee, B. Hill, G. Xu, R. Mallinson, L. Lobban, Ind. Eng. Chem. 35 (1996) 3295—3301. https://doi.org/10.1021/ie960138j.

B.L. Farrell, V.O. Igenegbai, S. Linic, ACS Catal. 6 (2016) 4340—4346. https://doi.org/10.1021/acscatal.6b01087.

A.V. da Rosa, J.C. Ordóñez, Fundamentals of Renewable Energy Processes, Academic Press, Oxford (2022), pp. 425. https://doi.org/10.1016/B978-0-12-816036-7.00021-X.

J.J. Zou, C.J. Liu, Carbon Dioxide as Chemical Feedstock, M. A. Editor Ed., Wiley-VCH, Weinheim (2010), pp. 274—279. https://doi.org/10.1002/9783527629916.ch10.

R. Sanchez-Gonzalez, Y. Kim, L.A. Rosocha, S. Abbate, IEEE Trans. Plasma Sci. 35 (2007) 1669—1676. https://doi.org/10.1109/TPS.2007.910743.

Y. Li, G.-h. Xu, C.-j. Liu, B. Eliasson, B.-z. Xue, Energy Fuels 15 (2001) 299—302. http://dx.doi.org/10.1021/ef0002445.

S. Ahmed, A. Aitani, F. Rahman, A. Al-Dawood, F. Al-Muhaish, Appl. Catal. A: Gen 359 (2009) 1—24. https://doi.org/10.1016/j.apcata.2009.02.038.

C. De Bie, J. Van Dijk, A. Bogaerts, J. Phys. Chem. C. 120 (2016) 25210—25224. https://doi.org/10.1021/acs.jpcc.6b07639.

D. Ren, G. Cheng, J. Li, J. Li, W. Dai, X. Sun, D. Cheng, Catal. Lett. 147 (2017) 2920—2928. https://doi.org/10.1007/s10562-017-2211-5.

A. Chongterdtoonskul, J.W. Schwank, S. Chavadej, J. Mol. Catal. 372 (2013) 175—182. http://dx.doi.org/10.1016/j.molcata.2013.02.016.

Similar Articles

You may also start an advanced similarity search for this article.