STUDY ON HEAT EXCHANGERS AND INDUSTRIAL ABSORPTION COLUMN FOR DRYING POLYETHYLENE TEREPHTHALATE Scientific paper

Main Article Content

Felipe Zauli da Silva
https://orcid.org/0000-0002-6395-5424
Izabella Carneiro Bastos
https://orcid.org/0000-0002-3462-9742

Abstract

This study proposes the use of mass balance and the method of McCabe-Thiele in the absorption column for the removal of drying air humidity with ethylene glycol and energy balances in heat exchangers for the determination of the optimum operating conditions of a factory to produce recycled polyester fibers from polyethylene terephthalate (PET) flakes. The evaluation of these machines involved the combination of variables such as temperature, flow rate, specific heat, and operational efficiency to guarantee the correct adjustment of the physicochemical properties of the fluids and materials of the process. The efficiency of the absorption column was determined at 25%, and a diagram correlating ethylene glycol humidity, the dew point of the drying air, and the efficiency of humidity removal from the PET flake dryer were constructed to define what is the most appropriate configuration for operation. By the graph curves, it was found that the humidity of ethylene glycol for absorption should be inferior to 1% (w/w) to guarantee a dew point < -27 °C at 175 °C of the drying air introduced in the dryer, which would finally promote a removal with efficiency superior to 91% of the PET flake humidity for values < 0.005% (w/w).

Article Details

How to Cite
da Silva, F. Z. ., & Carneiro Bastos, I. (2023). STUDY ON HEAT EXCHANGERS AND INDUSTRIAL ABSORPTION COLUMN FOR DRYING POLYETHYLENE TEREPHTHALATE: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(2), 129–139. https://doi.org/10.2298/CICEQ210622020S
Section
Articles

References

A.M. Al-Sabagh, F.Z. Yehia, G. Eshaq, A.M. Rabie, A.E. ElMetwally, Egypt. J. Pet. 25 (2016) 53—64. https://doi.org/10.1016/j.ejpe.2015.03.001.

J.C.T. Picazo, J.G.L. Bárcenas, A.G. Chávez, R.G. Nuñez, A.B. Petriciolet, C.A. Castillo, Fibers Polym. 15 (2014) 547—552. https://doi.org/10.1007/s12221-014-0547-7.

J. Scheirs, T.E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons Ltd, Chichester (2003), p. 44—54. ISBN: 978-0-471-49856-8.

A. Elamri, K. Abid, O. Harzallah, A. Lallam, Am. J. Nano Res. Appl. 3 (2015) 11—16. https://doi.org/10.11648/j.nano.s.2015030401.13.

S.A. Jabarin, E.A. Lofgren, J. Appl. Polym. Sci. 32 (1986) 5315—5335. https://doi.org/10.1002/app.1986.070320607.

H. Lobo, J.V. Bonilla, Handbook of Plastics Analysis, Marcel Dekker, Inc. New York (2003), p. 101—105. https://doi.org/10.1201/9780203911983.

Plastics Technology, How to Dry PET for Container Applications,(2014). https://www.ptonline.com/articles/how-to-dry-pet-for-container-applications.

B. Demirel, A. Yaraș, H. Elçiçek, BAÜ Fen Bil. Enst. Dergisi Cilt 13 (2011) 26—35. https://acikerisim.bartin.edu.tr/bitstream/handle/11772/1592/33-52-1-SM.pdf?sequence=1.

M. Zanin, S. D. Mancini, Resíduos plásticos e reciclagem: aspectos gerais e tecnologia, EdUFSCar, São Carlos, (2015), p. 82—87. https://doi.org/10.7476/9788576003601.

J.D. Seader, E.J. Henley, D.K. Roper, Separation Process Principles: Chemical and Biochemical Operations, 3th Ed., John Wiley & Sons, (2011), p. 111—113. https://imtk.ui.ac.id/wp-content/uploads/2014/02/Separation-Process-Principles-Third-Edition.pdf.

A.S. Mujundar, Handbook of Industrial Drying, 4th Ed., CRC Press New Jersey (2015), p. 204—207, https://doi.org/10.1201/b17208.

B.D. Whitehead, Ind. Eng. Chem. Process Des. Dev. 16 (1977) 341—346. https://doi.org/10.1021/i260063a017.

F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentos de Transferência de Calor e de Massa, LTC, (2012), p. 427—430. http://ftp.demec.ufpr.br/disciplinas/TMEC030/Prof_Luciano/Fundamentos-de-transferencia-de-calor-e-de-massa-incropera.pdf.

J.R. Welty, C.E. Wicks, R.E. Wilson, G.L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley & Sons, (2008), p. 142—150. ISBN: 978-0470128688.

C. Lambré, J.M.B. Baviera, C. Bolognesi, A.Chesson, P.S. Cocconcelli, R.Crebelli, D.M. Gott, K. Grob, M. Mengelers, A. Mortensen, G. Rivière, I.-L. Steffensen, C. Tlustos, H. Van Loveren, L. Vernis, H. Zorn, V. Dudler, M.R. Milana, C. Papaspyrides, M. de Fátima Tavares Poças, A. Lioupis, R. Marano, E. Lampi, EFSA J., 19 (2021) 6791—6804. https://doi.org/10.2903/j.efsa.2021.6791.

I.S. Al-Haydari, H.S. Al-Haidari, IOP Conf. Ser.: Mater. Sci. Eng. 870 (2020) 1—9. https://doi.org/10.1088/1757-899X/870/1/012073.

F.Z. Silva, I.C. Bastos, R.F. Perna, S.A.V. Morales, Chem. Ind. Chem. Eng. Q. 27 (2021) 289—298. https://doi.org/10.2298/CICEQ200121047Z.

M. Ahani, M. Khatibzadeh, M. Mohseni, Nanocomposites 2 (2016) 29—36. https://doi.org/10.1080/20550324.2016.1187966.

A. Telli, N.J. Özdil, J. Eng. Fibers Fabr. 10 (2015) 47—60. https://doi.org/10.1177/155892501501000206.

E. Tavcar, E. Turk, S. Kreft, J. Anal. Methods Chem. (2012) 379724. https://doi.org/10.1155/2012/379724.

M. Margreth, R. Schlink, A. Steinbach, Water Determination By Karl Fischer Titration. Analysis and Pharmaceutical Quality, John Wiley & Sons, (2010), p. 22—24. https://doi.org/10.1002/9780470571224.pse415.

E. Scholz, Karl Fischer Titration Determination of Water, Springer-Verlag Berlin Heidelberg, (1984), p. 31—33. https://doi.org/10.1007/978-3-642-69989-4.

M. Saçak, N. Bastug, M. Talu, J. Appl. Polym. Sci. 50 (1993) 1123—1129. https://doi.org/10.1002/app.1993.070500702.

M.G. Lawrence, Am. Meteorol. Soc. (2005) 225—233. https://doi.org/10.1175/BAMS-86-2-225.

M. Olbricht, A. Luke, Heat Mass Transfer 55 (2019) 81—93. https://doi.org/10.1007/s00231-018-2363-x.

K. Senthilkumar, I. Siva, J.J.T. Winowlin, M. Vikneshwararaj, J. Chem. Pharm. Sci. 7 (2015) 172—174. http://www.jchps.com/specialissues/Special%20issue%207/43%20MITNC-48%20K.%20Senthilkumar%20172-174.pdf.

W.M. Haynes, T.J. Bruno, D.R. Lide, CRC Handbook of

Chemistry and Physics, CRC Press/Taylor and Francis (2016), p. 2520. https://doi.org/10.1201/9781315380476.

T.K. Ibrahim, R.K. Abdulrahman, F.H. Khalaf, I.M Kamal, J. Chem. Eng. Process Technol. 8 (2017) 1000337. https://doi.org/10.4172/2157-7048.1000337.

B. Mishra, A. Srivastava, K. Yadav, Heat Mass Transfer 56 (2020) 1153—1169. https://doi.org/10.1007/s00231-019-02759y.

Yount FS. et. al. (2021) ASHRAE Handbook of Fundamentals. SI Edition. ASHRAE, Atlanta, USA. https://www.ashrae.org/technical-resources/ashrae-handbook/description-2021-ashrae-handbook-fundamentals.

Most read articles by the same author(s)