Main Article Content



Pervaporation is a membrane process that offers high separation performance and has an important potential for the treatment of saline water sources. In this study, poly(vinyl alcohol) (PVA) and PVA-SiO2 nanocomposite membranes were prepared by the solution-casting method, and pervaporative water desal­ination studies were carried out for synthetic seawater (35 g L-1) at 30, 40 and 50 °C. Effects of the temperatures and the incorporation of SiO2 on the pervap­or­ation performance of polymeric nanocomposite membranes were inves­tig­ated. Membranes were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric ana­lysis (TGA). In experiments conducted at 50 °C, a permeate flux of 4.93 kg m-2 h-1 with a salt rejection of 99.3% were obtained. The highest salt rejection was 99.8% at temperature of 30 °C. The results showed that the pervaporation per­formance of PVA membranes was remarkably enhanced with the incorporation of nano-SiO2 into polymeric matrix.

Article Details

How to Cite
TIRNAKCI, B. ., & SALT, Y. . (2021). PREPARATION AND CHARACTERIZATION OF PVA-SIO2 NANOCOMPOSITE MEMBRANES FOR SEAWATER DESALINATION BY PERVAPORATION: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 27(2), 189–197.


E. Drioli, A.I. Stankiewicz, F. Macedonio, J. Membr. Sci. 380 (2011) 1–8

Y. Li, L. Zhu, J. Taiwan Inst. Chem. Eng. 80 (2017) 867-874

H. Cherif, J. Belhadj, In Sustainable Desalination Hand¬book-Plant Selection, Design and Implementation, Ch. 15, B.G. Gude, Ed., Butterworth-Heinemann: Oxford, 2018, pp 527-559

J.O. Brotto, N. Padoin, C. R. Rambo, C. Soares, Water Supply 19 (2018) 1221-1228

T. Humplik, J. Lee, S.C. OHern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanotechnology 22 (2011) 292001

A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Desalination 221 (2008) 47-69

Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination 387 (2016) 46-60

R.Y.M. Huang, Pervaporation Membrane Separation Process, Elsevier, Amsterdam, 1991

R.D. Noble, S.A. Stern, Membrane Separations Techno¬logy, Principles and Applications, Elsevier, Amsterdam, 1995

B. Yilman, F.U. Nigiz, A. Aytaç, N.D. Hilmioglu, Water Supply 19 (2018) 1229-1237

F.U. Nigiz, N.D. Hilmioglu, Desalin. Water Treat. 57 (2016) 4749-4755

M. Maghami, A. Abdelrasul, In Zeolites and Their Applications, Ch. 7, M.N. Rashed, Ed., IntechOpen Ltd: London, 2018, pp. 115-134

L.Y. Ng, A.W. Mohamad, C.P. Leo, N. Hilal, Desalination 308 (2013) 15-33

J.H. Jhaveri, Z.V.P. Murthy, Desalin. Water Treat. 57 (2016) 26803-26819

Z. Xie, M. Hoang, T. Duong, D. Ng, B. Dao, S. Gray, J. Membr. Sci. 383 (2011) 96–103

Z. Xie, D. Ng, M. Hoang, T. Duong, S. Gray, Desalination 273 (2011) 220-225

C.H. Cho, K.Y. Oh, S.K. Kim, J.G. Yeo, P. Sharma, J. Membr. Sci. 371 (2011) 226–238

S.G. Chaudhri, B.H. Rajai, P.S. Singh, Desalination 367 (2015) 272-284

B. Liang, K. Pan, L. Li, E.P. Giannelis, B. Cao, Desalination 347 (2014) 199-206

B. Tirnakci, Masters thesis, Yildiz Technical University, Istanbul, 2017

C.-K. Yeom, K.-H. Lee, J. Membr. Sci. 109 (1996) 257-265

E.F. Reis, F.S. Campos, A.P. Lage, R.C. Leite, L.G. Heneine, W.L. Vasconcelos, Z.I.P. Lobato, H.S. Mansur, Mater. Res. 9 (2006) 185-191

Y. Salt, E. Arcevik, B. Ekinci, Can. J. Chem. Eng. 92 (2014) 503-510

G. Yang, Z. Xie, M. Cran, D. Ng, S. Gray, J. Membr. Sci. 579 (2019) 40-51

P. Das, S.K. Ray, S.B. Kuila, H.S. Samanta, N.R. Singha, Sep. Purif. Technol. 81 (2011) 159-173

R.S. Veerapur, M.B. Patil, K.B. Gudasi, T.M. Aminabhavi, Sep. Purif. Technol. 58 (2008) 377–385

G. Jyoti, A. Keshav, and J. Anandkumar, J. Eng. (2015), Article ID 927068

O. Miyawaki, A. Saito, T. Matsuo, K. Nakamura, Biosci. Biotech. Biochem., 61 (1997) 466-469

B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Pro-perties of Gases and Liquids, McGraw-Hill, NewYork, 2001

L. Zhu, J. Wang, L. Guo, J. Shen, Adv. Mater. Res. 239-242 (2011) 1956-1959

A. Şahin, I. Ar, J. Therm. Sci. Tech. 34 (2014) 153-162

C.K. Yeom, K.H. Lee, J. Appl. Polym. Sci. 67 (1998) 209-219

B. Smith, Infrared Spectral Interpretation: A Systematic Approach, CRC Press, New York, 1999

O. Farid, F. Mansour, M. Habib, J. Robinson, S. Tarleton, J. Environ. Chem. Eng. 4 (2016) 293-298

S. Tang, P. Zou, H. Xiong, H. Tang, Carbohydr. Polym. 72 (2008) 521-526

C.C. Yang, Y.J. Li, T.H. Liou, Desalination 276 (2011) 366-372

C.C. Yang, J. Membr. Sci. 288 (2007) 51-60

A. Huang, B. Feng, J. Membr. Sci. 548 (2018) 59-65

J. Xu, C. Gao, X. Feng, J. Membr. Sci. 352 (2010) 197–204

D. T. Bui, A. Nida, K. C. Ng, K. J. Chua, J. Membr. Sci. 498 (2016) 254–262

S.G. Chaudhri, J.C. Chaudhari, P.S. Singh, J. Appl. Polym. Sci. 134 (2017) 45718

R. Zhang, B. Liang, T. Qu, B. Cao, P. Li, Environ. Technol. 40 (2017) 312-320

X. Qian, N. Li, Q. Wang, S. Ji, Desalination 438 (2018) 83-96

A. Selim, A.J. Toth, E. Haaz, D. Fozer, A., Szanyi, N. Hegyesi, P. Mizsey, Sep. Purif. Technol. 221 (2019) 201-210

L. Li, J. Hou, Y. Ye, J. Mansouri, V. Chen, Desalination 422 (2017) 49-58

D. Wu, A. Gao, H. Zhao, X. Feng, Chem. Eng. Res. Des. 136 (2018) 154-164.