Upotreba smeše uglja i nafte kao aditiva za selektivnu redukciju lateritne rude Caron procesom Stručni rad
Glavni sadržaj članka
Apstrakt
Lateritne rude predstavljaju glavni izvor sirovine za ekstrakciju Ni i Co po Caron procesu. Potrošnja ulja u redukcionoj peći jedan je od ključnih pokazatelja da li je metalurški proces ekonomičan. Do danas nije bilo moguće zameniti aditiv lož ulje koji se koristi u komercijalnim razmerama, stoga je cilj ove studije bio da se delimično zameni nafta bitumenskim ugljem na pilot skali korišćenjem mešavine 2 % uglja i 1,25 % nafte kao redukcionog aditiva. Faze redukovanih/luženih ruda analizirane su difrakcijom rendgenskih zraka praha, dok je metalno stanje rude određivano luženjem izreagovanih uzoraka rastvorom brom-etanola nakon čega je usledila analiza atomske apsorpcione spektrometrije. Ekstrakcije Ni i Co potvrđene su luženjem redukovane rude rastvorima amonijum-amonijum karbonata. Uočeno je da smeša koja se koristi kao redukcioni aditiv može da zameni mazut jer omogućava adekvatnu transformaciju glavnih mineraloških faza lateritne rude tokom procesa redukcije i prosečne prinose ekstrakcije Ni i Co za ~3 i ~8. %, redom. Iako efekat veličine čestica bitumenskog uglja u procesu nije analiziran, redukciona smeša je obezbedila da je Caron proces efikasniji.
Detalji članka
Broj časopisa
Rubrika

Ovaj rad je pod Creative Commons Aуторство-Nekomercijalno-Bez prerade 4.0 Internacionalna licenca.
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Reference
Bartzas G, Tsakiridis PE, Komnitsas K. Nickel industry: Heavy metal(loid)s contamination - sources, environmental impacts and recent advances on waste valorization. Curr Opin Environ Sci Heal. 2021; 21: 100253 https://doi.org/10.1016/j.coesh.2021.100253
Mitterecker J, Košević M, Stopic S, Friedrich B, Panić V, Stevanović J, Mihailović M. Electrochemical Investigation of Lateritic Ore Leaching Solutions for Ni and Co Ions Extraction. Metals (Basel). 2022; 12(2): 325 https://doi.org/10.3390/met12020325
Al-Khirbash SA. Mineralogical characterization of low-grade nickel laterites from the North Oman Mountains: Using mineral liberation analyses - scanning electron microscopy-based automated quantitative mineralogy. Ore Geol Rev. 2020; 120: 103429 https://doi.org/10.1016/j.oregeorev.2020.103429
Gleeson SA, Butt CRM, Elias M. Nickel Laterites. SEG Discov 2003; (54): 1-18 https://doi.org/10.5382/SEGnews.2003-54.fea.
Domenech C, Galí S, Villanova-de-Benavent C, Soler J, J P. Reactive transport model of the formation of oxide type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba. Mineralium Deposita. 2017; 52(7): 993-1010
Aiglsperger T, Proenza JA, Lewis JF, et al. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol Rev. 2016; 73: 127-147. https://doi.org/10.1016/j.oregeorev.2015.10.010
Oxley A, Barcza N. Hydro-pyro integration in the processing of nickel laterites. Miner Eng. 2013; 54: 2-13. https://doi.org/10.1016/j.mineng.2013.02.012.
Caron MH. “Fundamental and practical factors in ammonia leaching of nickel and cobalt ores” JOM-Journal of the Minerals, Metals and Materials Society, 1950; 2(1): 67-90. https://doi.org/10.1007/BF03398981
Caron MH. “Separation of Nickel and Cobalt” JOM-Journal of the Minerals, Metals and Materials Society, 1950; 2(1): 91-103. https://doi.org/10.1007/BF03398982
Kießling F, Stopic S, Gürmen S, Friedrich B. Recovery of Diamond and Cobalt Powders from Polycrystalline Drawing Die Blanks via Ultrasound Assisted Leaching Process—Part 2: Kinetics and Mechanisms. Metals (Basel), 2020; 10(6): 741. https://doi.org/10.3390/met10060741
Palma HJA, Legrá AL, Urgellés AL, Gálvez E, Castillo J. Post-combustion Effect on Nickel and Cobalt Extractions from the Caron Process. In: Proceedings of Fourth International Conference on Inventive Material Science Applications, ICIMA 2021. Coimbatore, India, 2022, pp. 515-527. https://doi.org/10.1007/978-981-16-4321-7_43
Rodriguez R. Reduction in energy cost in Cuban Caron Process Plants. In: International Laterite Nickel Symposium 2004 (as held during the 2004 TMS Annual Meeting). The Minerals, Metals & Materials Society 2004, pp. 657-664. ISBN: 0-87339-550-6.
Canterford Jh. Oxide Ores of Nickel — The Australian Situation. Miner Process Extr Metall Rev. 1983; 1(1-2): 85-109. https://doi.org/10.1080/08827508308952590
Shofi A, Supriyatna YI, Prasetyo AB. Selective Reduction of Southeast Sulawesi Nickel Laterite using Palm Kernel Shell Charcoal: Kinetic Studies with Addition of Na2SO4 and NaCl as Additives. Bull Chem React Eng Catal. 2020; 15(2): 501-513. https://doi.org/10.9767/bcrec.15.2.7733.501-513
Coello-Velázquez AL, Quijano Arteaga V, Menéndez-Aguado JM, Pole FM, Llorente L. Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals (Basel). 2019; 9(8): 882. https://doi.org/10.3390/met9080882
De Graaf JE. The treatment of lateritic nickel ores — a further study of the caron process and other possible improvements. Part I. Effect of reduction conditions. Hydrometallurgy. 1979; 5(1): 47-65. https://doi.org/10.1016/0304-386X(79)90027-6
Pickles CA, Elliott R. Thermodynamic analysis of selective reduction of nickeliferous limonitic laterite ore by carbon monoxide. Miner Process Extr Metal.l 2015; 124(4): 208-216. https://doi.org/10.1179/1743285515Y.0000000009
Pickles CA, Anthony W. A Thermodynamic Study of the Reduction of a Limonitic Laterite Ore by Methane. High Temp Mater Process. 2018; 37(9-10): 909-19. https://doi.org/10.1515/htmp-2017-0106
Pickles CA, Anthony W. Thermodynamic modelling of the reduction of a saprolitic laterite ore by methane. Miner Eng. 2018; 120: 47-59. https://doi.org/10.1016/j.mineng.2018.02.006
de Alvarenga Oliveira V, dos Santos CG, de Albuquerque Brocchi E. Assessing the Influence of NaCl on the Reduction of a Siliceous Laterite Nickel Ore Under Caron Process Conditions. Metall Mater Trans B. 2019; 50(3): 1309-1321. https://doi.org/10.1007/s11663-019-01552-w
Valix M, Cheung W. Effect of sulfur on the mineral phases of laterite ores at high temperature reduction. Miner Eng. 2002; 15(7): 523-530. https://doi.org/10.1016/S0892-6875(02)00069-9
Ilyas S, Srivastava RR, Kim H, Ilyas N, Sattar R. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Sep Purif Technol. 2020; 232: 115971. https://doi.org/10.1016/j.seppur.2019.115971
Angulo-Palma HJ, Legrá-Legrá A, Hernández-Pedrera C, Lamorú-Urgellés A, Vega-Cala RJ. Efecto de la sustitución del petróleo aditivo por carbón bituminoso en el proceso de reducción de lateritas. Eff Substit Addit Oil with Bitum Coal Process Reducing Laterites. 2018; 38(3): 750-764. (Spanish)
Angulo-palma HJ, Legr A, Hern C, Lamor A, Toro-villarroel N. Reducción de menas lateríticas utilizando como aditivo mezclas de carbón bituminoso y petróleo. Tecnol Química. 2020; 40(1): 93-105. (Spanish)
Angulo-palma HJ, Terencio-guevara PL, Legrá-Legrá A, Videaux-arcia L. Análisis especiales en un horno de reducción de níquel a escala de Planta Piloto Special Analysis in a Nickel Reduction Furnace at Pilot Plant scale. Tecnol Química. 2017; 37(3): 484-499. (Spanish)
Basulto L. Evaluación de la sustitución de fuel-oil por finos de carbón antracita como aditivo en la empresa Comandante Ernesto Che Guevara 2018. http://ninive.ismm.edu.cu/handle/123456789/1706 (Spanish)
Ilyas S, Kim H, Srivastava RR. Carbothermic Reduction Roasting of a Low-Grade Nickel Laterite Ore in the Modified Caron Process. In: Ni-Co 2021 5th Int Symp Nickel Cobalt 2021: 317-328. https://doi.org/10.1007/978-3-030-65647-8_27
Suarez JC, Villanueva GAA, Fuxa AMDLC, González PM, Urtafe IL, Laurencio OP, Rodríguez ME. Hydrometallurgical process for the recovery of nickel and cobalt by ammoniacal leaching. US 6,524,367 B1, 2003
Angulo-Palma HJ, Legrá-Legrá A, Hernández-Pedrera C. Modelos para determinar variables importantes en el proceso Caron. Parte I: Consumo específico de energía en molienda. Opuntia Brava. 2021; 13: 149-57. (Spanish)
Sant B. Determination of metallic iron, iron(II) oxide, and iron(III) oxide in a mixture. Talanta. 1968; 15(12): 1483-1486. https://doi.org/10.1016/0039-9140(68)80211-5
Chander S, Sharma VN. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy. 1981; 7(4): 315-327. https://doi.org/10.1016/0304-386X(81)90029-3
Valix M, Cheung WH. Study of phase transformation of laterite ores at high temperature. Miner Eng. 2002; 15(8): 607-612. https://doi.org/10.1016/S0892-6875(02)00068-7
O’Connor F, Cheung WH, Valix M. Reduction roasting of limonite ores: effect of dehydroxylation. Int J Miner Process. 2006; 80(2-4): 88-99 https://doi.org/10.1016/j.minpro.2004.05.003
Pintowantoro S, Widyartha AB, Setiyorini Y, Abdul F. Sodium Thiosulfate and Natural Sulfur: Novel Potential Additives for Selective Reduction of Limonitic Laterite Ore. J Sustain Metall. .2021; 7(2): 481-494. https://doi.org/10.1007/s40831-021-00352-4
Cabrera G, Gómez JM, Hernández I, Coto O, Cantero D. Different strategies for recovering metals from CARON process residue. J Hazard Mater. 2011; 189(3): 836-842. https://doi.org/10.1016/j.jhazmat.2011.03.048
Rojas-Purón AL, Turro-Breffe A. Composición mineralógica de las colas del proceso Caron en Moa, Holguín, Cuba. Minería y Geol. 2003; 19:8. (Spanish)
Miranda J, Chaviano L, Miranda J. Nuevas interpretaciones quimico-mineralogicas de las menas lateriticas y serpentinicas a traves del proceso pirometalurgico en la tecnologia carbonato-amoniacal. Rev Cuba Química. 2002; 14: 42-51. (Spanish)
Sánchez-Ramos S, Doménech-Carbó A, Gimeno-Adelantado JV, Peris-Vicente J, Valle-Algarra FM. Thermal decomposition of chromite spinel with chlorite admixture. Thermochim Acta. 2008; 476(1-2): 11-19. https://doi.org/10.1016/j.tca.2008.07.003
Chang-Cardona AR, Rojas-Vargas A. Comportamiento electroquímico del Fe y sus iones durante la lixiviación estándar QT de minerales reducidos en el proceso “Caron” con diferentes aireaciones. Tecnol Química. 2014; 34: 117-127. (Spanish)
Rojas-Vargas A, Sánchez-Guillen C, Magaña-Haynes ME, Hernández-Pedrera C. Extracción potencial de níquel y cobalto con mineral laterítico de mina “Pinares de Mayarí” en la tecnología Caron. Parte I. Tecnol Química. 2021; 41: 519531. (Spanish)
[Rojas Vargas A, Magaña Haynes ME, Riverón AR. Lixiviación carbonato amoniacal: estimación del níquel disuelto en el efluente de destilación. Rev Metal. 2019; 55(3): 149.https://doi.org/10.3989/revmetalm.149. (Spanish)