Uklanjanje amonijum – jona zeolitima sintetizovanih alkalnim fuzionim postupkom od različitih vrsta letećeg pepela

Dijana Drljača, Snežana Maletić, Božo Dalmacija

Abstract


U ovom radu ispitivano je uklanjanje amonijum-jona iz vodene sredine pomoću zeolita sintetizovanih od različitih uzoraka letećeg pepela (termoelektrana Ugljevik (U), Stanari (S) i Gacko (G)) alkalnim fuzionim postupkom uz naknadnu hidrotermalnu obradu. Sintezom su dobijeni sljedeći uzorci zeolita Ugljevik fuzioni (UF), Stanari fuzioni (SF), i Gacko fuzioni (GF). Serijom eksperimenata ispitano je ravnotežno vrijeme kontakta dobijenih zeolita i model rastvora, uticaj pH vrijednosti, kao i zavisnost adsorpcije od početne koncentracije amonijum-jona. Ispitivanjem kinetike adsorpcionog procesa ustanovljeno je da proces adsorpcije na svim zeolitima prati Elovičev model. Najveća količina adsorbovanog NH4+/g zeolita određena je pri pH vrijednosti 8. Ispitivanje adsorpcionih izotermi pokazuje bolje slaganje dobijenih rezultata sa Lengmirovim modelom za uzorak zeolita SF, i Tempkinovim modelom za uzorke zeolita UF i GF. Regenerisani zeoliti (UFr, SFr i GFr) pokazuju približan kapacitet adsorpcije amonijum-jona (za UFr 10,3 mg NH4+/g; za SFr 12,0 mg NH4+/g i za GFr 7,8 mg NH4+/g) kao i originalni zeoliti (za UF 12,2 mg NH4+/g; za SF 11,9 mg NH4+/g i za GF 14,3 mg NH4+/g). Primjena originalnih i regenerisanih zeolita na realnom uzorku otpadne vode potvrđuje konstataciju da su sintetizovani zeoliti na bazi letećeg pepela materijal sa velikim potencijalom za uklanjanje amonijum-jona iz otpadnih voda.


Keywords


adsorpcija, kinetika, zavisnost od pH, regeneracija, primjena

References


Sukpreabprom H, Arquero OA, Naksata W, Sooksamiti P, Janhom S. Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Cd (II) and Zn (II) ions from Aqueous Solutions onto Bottom Ash. Int J Environ Sci De.2014; 5(2): 165–170.

Franus M, Wdowin M, Bandura L, Franus W. Removal of environmental pollutions using zeolites from fly ash: A review. Fresen Environ Bull. 2015; 24(3a): 854 – 866.

Bandura L, Panek R, Rotko M, Franus W. Synthetic zeolites from fly ash for an effective trapping of BTX in gas stream. Micropor Mesopor Mat. 2016;223: 1–9.

Attari M, Bukharia SS, Kazemianb H, Rohania S. A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J Environ Chem Eng. 2017; 5: 391–399.

Zhang Y, Dong J, Guo F, Shao Z, and Wu J. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water. Minerals. 2018; 8(3): 1–14.

Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F. Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geology 2002; 50(1-4): 413– 423.

Zhang M, Zhang H, Xu D, Han L, Niu D, Zhang L, Wu W, Tian B. Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes. Desalination 2011b; 277: 46–53.

Franus W. Characterization of X-type Zeolite Prepared from Coal Fly Ash. Pol J Environ Stud. 2012; 21 (2): 337–343.

Cheng H, Song H, Xue F, Chen X, Cheng F. Influence of Modified Coal Fly Ash on Its Cation Exchange Capacities.Pol J Environ Stud. 2014;23(4): 1307–1312.

Shaila K, Nisha D, Pralhad P, Deepa P. Zeolite Synthesis Strategies from Coal Fly Ash: A Comprehensive Review of Literature – Review Paper. Int Res J Environment Sci. 2015; 4(3): 93–99.

Hung PA, Hai NX. Mineral composition and properties of modified flyash. J Agr Biol Sci. 2014;9(2): 51–54.

Belviso C. State-of-the-artapplications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog Energ Combust Sci.2018;65: 109–135.

Drljača D, Vukić Lj, Šinik A, Maletić S. Izluživanje teških metala iz uzoraka elektrofilterskog pepela termoelektrana. IV međunarodni kongres „Inženjerstvo, ekologija i materijali u procesnoj industriji“. Jahorina, Bosna i Hercegovina, 2015, 569-578. (in Serbian)

Zhang M, Zhang H, Xu D, Han L, Niu D, Tian B, Zhang J, Zhang L, Wu W. Removal of ammonium from aqueous solutions using zeolite synthesized from flyash by a fusion method. Desalination 2011a; 271: 111–121.

ASTM D1426-08 – Standard Test Methods for Ammonia Nitrogen In Water: Test Methoda A, 2008.

Tran HN, You Sh-J, Bandegharaei AH, Chao H-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Wat. Res. 2017; 120:88-116.

Mozgawa W, Król M, Barczyk K. FT-IR studies of zeolites from different structural groups. Chemik 2011;65(7): 667–674.

Jha B, Padmakumar GP, Singh DN, Iyer K. Synthesis of zeolites by fly ash-alkali interaction. In: Proceedings of Indian Geotechnical Conference. Cochi, India, 2011, 1089–1092.

Karadag D, Koc Y, Turan M, Armagan B. Removal of ammonium ion from aqueous solution using Turkish clinoptilolite. J Hazard Mater. 2006; 136(3): 604–609.

Mazloomi F, Jalali M. Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. J Environ Chem Eng. 2016; 4(1):240–249.

Tomić Ž, Kukučka M, Kukučka Stojanović N, Kukučka A, Jokić A. CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia. J Environ Sci and Health, Part A. 2016; 51(12):1068-1074.

Yu H, Tian W, Huang R, Wang Y. Preparation of a coal cinder-zeolite ball and its adsorption performance for ammonia nitrogen. 5th International Conference on Information Engineering for Mechanics and Materials. Huhhot, Inner Mongolia, 2015, 1530–1535.

Karadag D, Koc Y, Turan M, Ozturk M. A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite. J Hazard Mater. 2007; 144(1-2): 432–437.

Niu Y, Zhao Y, Xi B, Hu X, Xia X, Wang L, LD, Lu J. Removal of ammonium from aqueous solutions using synthetic zeolite obtained from coal fly-ash. Fresen Environ Bull.2012; 21(7): 1732–1739.

Alias MY, Lee KK, Zaharah I, Zaiton AM, Nik AN. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. J Hazard Mater.2010;174(1-3): 380–385.

Emerson K, Russo RC, Lund LE, Thurston RV Aqueous ammonia equilibrium calculations: effects of pH and temperature. Journal of the Fisheries Research, Board of Canada. 1975; 32(12): 2379–2383.

Erikson RJ. An evaluation of mathematical models for the effects of pH and temperature on ammonia toxicity to aquatic organisms. Wat Res. 1985;19(8): 1047–1058.

Lin L, Lei Z, Wang L, Liu X, Zhang Y, Wan C, Lee DJ, Tay JH. Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Sep Purif Technol. 2013; 103: 15–20.

Zhang B, Wu D, Wang Ch, He Sh, Zhang Z, Kong H. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. J Environ Sci. 2007;19(5): 540–545.

Juan R, Hernández S, Andrés JM, Ruiz C. Synthesis granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash. Fuel. 2007;86: 1811–1821.

Yujie B, Aili Z, Jiti Z. Study on treatment of methylene blue wastewater by fly ash adsorption-fenton and thermal regeneration. Environmental Sci. 2012; 33(7): 2419-3426.

Hui KS, Chao CYH, Kot SC. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater B. 2005; 127(1-3): 89–101.

Franus W. Wdowin M. Franus M. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ Monit Assess. 2014; 186(9): 5721–5729.




DOI: https://doi.org/10.2298/HEMIND190211022D

Copyright (c) 2019 _ HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.