Oscilatorna reakcija kao sistem detektor za dopirane i nedopirane fosfat-volframove bronze

Main Article Content

Tijana V. Maksimović
Jelena P. Maksimović
Ljubinka G. Joksović
Zoran P. Nedić
Maja C. Pagnacco

Abstract

Fosfat-volframove bronze, dobijene termičkim tretmanom, su nedovoljno ispitane bronze i o njihovom ponašanju i strukturi malo se zna. Brigs-Raušer (Briggs-Rauscher, BR) oscilatorna reakcija se zbog svoje izrazite osetljivosti na prisustvo aditiva nameće kao jedna od mogućih metoda za dobijanje neophodnih informacija o osobinama ovih bronzi. U ovom radu, ispitan je uticaj fosfat-volframove (PWB) i fosfat-volframove bronze dopirane litijumom (LiPWB) na dinamiku oscilatorne BR reakcije. Prisustvo volframovih bronzi značajno smanjuje dužinu oscilatornog perioda BR reakcije. Dobijeni rezultati pokazuju da PWB ima jači uticaj na dužinu oscilatornog perioda u odnosu na LiPWB. U oba slučaja, oscilatorni period je linearna funkcija mase dodate bronze. Dobijena linearna zavisnost se može uspešno koristiti kao kalibraciona kriva za određivanje kako nepoznate mase bronze, ali i kao potencijalni sistem-detektor za dopirane i nedopirane fosfat-volframove bronze, s obzirom na različiti nagib koje ove dve kalibracione krive poseduju. Rezultati optičke emisione spektrometrije sa indukovano spregnutom plazmom (ICP-OES) pokazuju da je jaka oksidaciona sredina narušila strukturu fosfat-volframovih bronzi, s obzirom na prisustvo litijuma i volframa u rastvoru. U skladu sa tim, predloženi mehanizam dejstva bronzi najverovatnije je građenje volfram-perokso kompleksa pri čemu dolazi do menjanja ukupne kinetike BR reakcije.

Downloads

Download data is not yet available.

Article Details

How to Cite
Maksimović, T. V., Maksimović, J. P., Joksović, L. G., Nedić, Z. P., & Pagnacco, M. C. (2018). Oscilatorna reakcija kao sistem detektor za dopirane i nedopirane fosfat-volframove bronze. HEMIJSKA INDUSTRIJA (Chemical Industry), 72(5), 275–283. https://doi.org/10.2298/HEMIND180402018M
Section
Engineering of Materials - Metal materials

References

Mioč UB, Dimitrijević RŽ, Davidović M, Nedić ZP, Mitrović MM , Colomban Ph. Thermally induced phase transformations of

-tungstophosphoric acid 29-hydrate: synthesis and characterization of PW8O26-type bronzes. J Mater Sci. 1994; 29: 3705–3718.

Dimitrijević RŽ, Colomban Ph, Mioč UB, Nedić ZP, Todorović MR, Tjapkin N, Davidović M. Synthesis, conductivity and structural characterization of phosphorous bronzes originating from heteropolyacids. Relation with similar proton containing phases. Solid State Ionics. 1995; 77: 250–256.

Mioč UB, Dimitrijević RŽ, Mitrović MM, Nedić ZP. Method for synthesis of metal-doped phosphorous tungsten bronzes starting from heteropoly acids precursor. J Serb Chem Soc. 1995; 60: 959–968.

Bierstedt PE, Bither TA, Darnel FJ. Superconductivity of some new hexagonal tungsten bronzes. Solid State Commun. 1966; 4: 25–26.

Bockris JM, Fredlein RA, Damjanović A. Tungsten bronze related non-noble electrocatalysts. Final Report, Contract DAADW7-69-C-0077 (ECOM). University of Pennsylvania; 1970.

Sidgwick NV. The Chemical Elements and Their Compounds. Oxford: Oxford University Press; 1951.

Berzelius JJ. Beitrag zur näheren Kenntnifs des Molybdäns. Pog Ann Phys Chem. 1826; 6: 369–392.

Marignac De.Recherches sur les tungstates, les fluotungstates et les silicotungstates. C R Acd Sci Paris. 1862; 55: 888–892.

Miolati A, Pizzighelli R. Zur Kenntnis der komplexen Säuren I. 1. Über die Leitfähigkeit von molybdänsäurehaltigen Gemischen. J Prakt Chem. 1908; 77: 417–456.

Pauling L. The molecular structure of the tungstosilicates and related compounds. J Am Chem Soc. 1929; 51: 2868–2880.

Keggin JF. The structure and formula of 12-phosphotungstic acid. Proc Roy Soc A. 1934; 144: 75–100.

Linnett JW. The structure of (PW12O40)3– and related ions. J Chem Soc. 1961; 0: 3796–3803.

Clark CJ, Hall D. Dodecamolybdophosphoric acid circa 30-hydrate. Acta Cryst. 1976; B32: 1545–1547.

Brown GM, Noe-Spirlet MR, Busing WR, Levy HA. Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403-). The true structure of Keggin's `pentahydrate' from single-crystal X-ray and neutron diffraction data. Acta Cryst. 1977; B33: 1038–1046.

Strandberg R. Multicomponent polyanions. 13. The crystal structure of a hydrated dodecamolybdophosporic acid, H3Mo12PO40(H2O)29-31. Acta Chem Scand. 1975; A29: 359–364.

Roussel P, Pérez O, Labbé P. Phosphate tungsten bronze series: crystallographic and structural properties of low-dimensional conductors. Acta Cryst. 2001; B57: 603–632.

Kolar-Anić Lj, Čupić Ž, Vukojević V, Anić S. Dinamika nelinearnih procesa. Beograd: Fakultet za fizičku hemiju, Univerzitet u Beogradu; 2011. (in Serbian)

Pejić N. Analitičke primene metode pulsne perturbacije Bray-Liebhafsky oscilatorne reakcije realizovane u otvorenom reaktoru. Hem Ind. 2009; 63(5a): 455–466. (in Serbian)

Blagojević S. Modeliranje uticaja malonske kiseline na oscilatornu evoluciju Belousov–Žabotinski reakcije u zatvorenom reaktoru. Hem Ind. 2009; 63(5a): 477–478. (in Serbian)

Pejić ND, Anić SR, Kolar-Anić LjZ. Analitičke primene oscilatornih hemijskih reakcija: određivanje nekih farmaceutskih i bioloških važnih jedinjenja. Hem Ind. 2012; 66(2): 153-164. (in Serbian)

Noyes RM, Furrow SD. The oscillatory Briggs–Rauscher reaction. 3. A skeleton mechanism for oscillations. J Am Chem Soc. 1982; 104: 45–484.

Furrow SD. A modified recipe and variations for the Briggs–Rauscher oscillating reaction. J Chem Educ. 2012; 89: 1421–1424.

Furrow SD, Cervellati R, Amadori G. New substrates for the oscillating Briggs–Rauscher reaction. J Phys Chem A. 2002; 106: 5841–5850.

Briggs TS, Rauscher WC. An oscillating iodine clock. J Chem Educ. 1973; 50: 496–496.

De Kepper P, Epstein IR. Mechanistic study of oscillations and bistability in the Briggs–Rauscher reaction. J Am Chem Soc. 1982; 104: 49–55.

Vukojević V, Sørensen PG, Hynne FJ. Predictive value of a model of the Briggs–Rauscher reaction fitted to quenching experiments. J Phys Chem. 1996; 100: 17175–17185.

Turányi T. Rate sensitivity analysis of a model of the Briggs–Rauscher reaction. React Kinet Catal Lett. 1991; 45: 235–241.

Kim KR, Shin KJ, Lee Dong J. Complex oscillations in a simple model for the Briggs–Rauscher reaction. J Chem Phys. 2004; 121: 2664–2672.

Čupić Ž, Lj Kolar-Anić, Anić S, Maćešić S, Maksimović J, Pavlović M, Milenković M, Bubanja IN, Greco E, Furrow SD, Cervellati R. Regularity of intermittent bursts in Briggs–Rauscher oscillating system with phenol. Helv Chim Acta. 2014; 97: 321–333.

Cervellati R, Höner K, Furrow SD, Neddens C, Costa S. The Briggs–Rauscher reaction as a test to measure the activity of antioxidants. Helv Chim Acta. 2001; 84(12): 3533–3547.

Rinaldo C, Renzulli C, Guerra MC, Speroni E. Evaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs–Rauscher reaction method. J Agric Food Chem. 2002; 50: 7504–7509.

Cervellati R, Furrow SD. Perturbations of the Briggs–Rauscher oscillating system by iron-phenanthroline complexes. Inorg Chim Acta. 2007; 360: 842–848.

Furrow SD, Aurentz DJ. Reactions of iodomalonic acid, diiodomalonic acid, and other organics in the Briggs–Rauscher oscillating system. J Phys Chem A. 2010; 114(7): 2526–2533.

Schmitz G, Furrow S. Kinetics of the iodate reduction by hydrogen peroxide and relation with the Briggs–Rauscher and Bray–Liebhafsky oscillating reactions. Phys Chem Chem Phys. 2012; 14: 5711–5717.

Stanisavljev D, Milenković MC, Mojović M, Popović-Bijelić A. Oxygen centered radicals in iodine chemical oscillators. J Phys Chem A. 2011; 115(27): 7955–7958.

Stanisavljev DR, Milenković MC, Popović-Bijelić AD, Mojović MD. Radicals in the Bray–Liebhafsky oscillatory reaction. J Phys Chem A. 2013; 117(16): 3292–3295.

Milenković MC, Potkonjak NI. The effect of hydroxycinnamic acids on oxy-radical generating iodide-hydrogen peroxide reaction. Bull Chem Soc Jpn. 2014; 87(11): 1255–1259.

Pagnacco MC, Mojović MD, Popović-Bijelić AD, Horváth AK. Investigation of the halogenate-hydrogen peroxide reactions using the electron paramagnetic resonance spin trapping technique. J Phys Chem A. 2017; 121(17): 3207–3212.

Randin JP. Inhibition Effects in the Electrochemical Reduction of Hydrogen Peroxide on Sodium Tungsten Bronzes. Can J Chem. 1974; 52: 2542-2545.

Brauer G. Handbuch der Preparativen Anorganischen Chemie. Stuttgart: Ferdinand Enke Verlag; 1981 .

Anić S, Kolar-Anić Lj. The oscillatory decomposition of H202 monitored by the potentiometric method with Pt and Ag+/S2- indicator electrode. Ber Bunsenges Phys Chem. 1986; 90: 1084-1086.

Peroxides and Peroxide Compounds (Inorganic) In Van Nostrand's Scientific Encyclopedia, G. D. Considine (Ed.). Jonh Wiley and Sons. Published Online; 2006.

Eckert RC. Delignification and Bleaching Process and Solution for Lignocellulosic Pulp with Peroxide in the Presence of Metal Additives. Can patent 1. 1982; 129: 161-161.

Suchy M, Argyropoulos DS. Catalysis and Activation of Oxygen and Peroxide Delignification of Chemical Pulps: A Review. ACS Symposium Series. 2001; 785: 2–43.