Sorpcija diklofenaka na selektivno oksidovanu celulozu

Main Article Content

Pero Sailović
Branka Rodić Grabovac
Snežana Uletilović

Abstract

Vezivanje ljekovitih preparata na polimerne nosače određeno je vrstom nosača i strukturom samog lijeka. U ovom radu kao polimerni nosač korištena je selektivno oksidovana celuloza (OC) sa 0,547 i 1,163 mmol/g COOH. Dobijena je oksidacijom celuloznog zavoja smjesom HNO3-H3PO4-NaNO2 u trajanju od 5 i 10 časova na temperaturi 25±1 oC, i upotrebljena je za vezivanje analgetika diklofenak-kalijuma. Vezivanje lijeka vršeno je iz vodenog rastvora koncentracija c = 2,5∙10-3, 3,4∙10-3 i 5,1∙10-3 mol/L na temperaturi 26±1 oC, a desorpcija analgetika u fiziološkom rastvoru. Količine vezanog i otpuštenog lijeka određene su spektro­fotometrijski na talasnoj dužini od λmax = 276 nm. Maksimalna količina vezanog lijeka nakon 24 h iznosila je 0,814 mmol/g OC (iz rastvora c = 5,1∙10-3 mol/L, na uzorku sa 1,163 mmol/g COOH), a maksimalna količina desorbovanog lijeka 0,063 mmol/g OC (nakon 24 h u fiziološkom rastvoru, uzorak sa 1,163 mmol/g COOH). U radu se proučava uticaj sadržaja COOH grupa i sorpcionih svojstava OC, kao i uticaj hemijske strukture diklofenaka, pH vrijednosti rastvora i trajanja sorpcije na količinu vezanog lijeka. Takođe, ispitana je i prekidna jačina oksidovanih celuloznih vlakana. Ustanovljeno je da se vezivanje lijeka ostvaruje pretežno vodoničnim vezama.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sailović, P., Rodić Grabovac, B., & Uletilović, S. (2018). Sorpcija diklofenaka na selektivno oksidovanu celulozu. HEMIJSKA INDUSTRIJA (Chemical Industry), 72(3), 167–176. https://doi.org/10.2298/HEMIND180119010S
Section
Engineering of Materials - Biomaterials

References

Whitelock JM, Iozzo RV. Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chem Rev. 2005; 105(7): 2745–2764.

Zhukovskii VA. Current status and prospects for development and production of biologically active fibre material for medical applications. Fibre Chem. 2005; 37: 352–355.

Vuorio M, Manzanares JA, Murtomaki L, Hirvonen J, Kankkunen T, Kontturi K. Ionic-exchange fibers and drugs: a transient study. J Controlled Release. 2003; 91: 439-448.

Rodić Grabovac B, Đuđić R, Sailović P. Obtaining of materials with antibacterial activity by bonding of cefazoline on modified cellulosic bandage. Contemp Mater. 2014; 5(2): 222-227.

Ammar HO, Ghorab M, El-Nahhas SA, Kamel R. Polymeric Matrix System for Prolonged Delivery of Tramadol Hydrochloride, Part I: Physicochemical Evaluation. AAPS Pharm Sci Tech. 2009; 10 (1): 7-20.

Yang L, Fassihi R. Modulation of diclofenac release from a totally soluble controlled release drug delivery system. J Controlled release. 1997; 44(2-3): 135-140.

Mandava V, Basaveswara R, Reddy BCK, Srinivasa RT, Prasanthi V. Estimation of Diclofenac Sodium Pellets (Extended Release) In Commercial Dosage Forms Using a Simple and Convenient Spectophotometric Method. Rasayan J. Chem. 2009; 2(2): 488-490.

Matin AA, Farajzadeh MA, Jouyban A. A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations. IL. Farmaco. 2005; 60(10): 855-858.

Hickey EJ, Raje RR, Reid VE, Gross SM, Ray SD. Diclofenac Induced in Vivo Nephrotoxicity May Involve Oxidative Stress-Mediated Massive Genomic DNA Fragmentation and Apoptotic Cell Death. Free Radic Biol Med. 2001; 31(2): 139-152.

Aielo PB, Borges FA, Romeira KM, Romeiro Miranda MC, de Arruda LB, Filho PNL, de C. Drago B, Herculano RD. Evaluation of sodium diclofenac release using natural rubber latex as carrier. Mat. Res. 2014; 17: 146-152.

Kozakevych RB, Bolbukh YM, Tertykh VA. Controlled Release of Diclofenac Sodium from Silica-Chitosan Composites. World Journal of Nano Science and Engineering. 2013; 3(3): 69-78.

Holgado MA, Sánchez-Lafuente C, Rabasco AM, Fini A. Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm. 2002; 232(1-2): 225-234.

McLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Controlled Release. 1998; 56: 259–272.

Billa N, Yuen KH, Peh KK. Diclofenac release from eudragit-containing matrices and effects of thermal treatment. Drug Dev Ind Pharm. 1998; 24(1): 45-50.

Chawla V, Tiwary AK, Gupta S. Characterization of polyvinylalcohol microspheres of diclofenac sodium: application of statistical design. Drug Dev In. Pharm. 2000; 26: 675–680.

Tuncay M, Calis S, Kas HS, Ercan MT, Pekosy I, Hincal AA. Diclofenac sodium incorporated PLGA incorporated (5:50) microspheres: formulation consideration and in vitro/in vivo evaluation. Int. J. Pharm. 2000; 15: 179–188.

Arica B, Arica MY, Kas HS, Hincal AA, Hasirici V. In vitro studies of enteric coated diclofenac sodium-carboxymethylcellulose microspheres. J. Microencapsul. 1996; 13: 689–699.

Gubbins RH, O'Driscoll CM, Corrigan OI. The effects of casein on diclofenac release from hydroxypropylmethylcellulose (HPMC) compacts. Int J Pharm. 2003; 260(1): 69-76.

Rodić Grabovac B, Đuđić R, Sailović P. Uticaj strukture ceftazidima na dobijanje biološki aktivnog celuloznog zavoja. Hem Ind. 2017; 71(1): 35–40. (in Serbian)

Du Z, Zhang L, Xu Y. Characterization of Structure and Property of the Monocarboxyl Bamboo Pulp Fibers. Mater Sci Appl. 2015; 6: 279-285.

Yurkshtovich TL, Zimnitski DS, Bychkovski PM. Effect of Structural and Electrolytic Properties of Carboxyl-Containing Cellulose Cationites on the Sorption of Cephalexin from Aqueous Solutions. Colloid J. 2004; 66(2): 239-244.

Kumar V, Deshpande SG. Noncovalent immobilization of bovine serum albumin on oxidized cellulose. Artif Cells Blood Substit Biotechnol. 2001; 29(3): 203–212.

Yurkshtovich TL, Alinovskaya VA, Butrim NS. Specific Features of Lincomycin and Gentamicin Sorption from Aqueous Solutions of Their Salts and Bases by Monocarboxyl Cellulose. Colloid J. 2002; 64(3): 379-383.

Đuđić R, Sailović P, Rodić Grabovac B, Rudić B. Uticaj koncentracije rastvora cefaleksina na sorpciju na modifikovano celulozno vlakno. Glasnik hem. teh. i ek. RS. 2015; 11: 19-23. (in Serbian)

Rodić-Grabovac B, Đuđić R, Ilišković N. Dobijanje biološki-aktivnog celuloznog vlakna sa anestezijskim djelovanjem. U: Ekologija, zdravlje, rad, sport,1,2. Banjaluka, BiH, 2006, pp. 226-232. (in Serbian)

Kumar V, Yang T. HNO3/H3PO4-NaNO2 mediated oxidation of cellulose - preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym. 2002; 48: 403-412.

Whistler RL. Methods in Carbohidrate Chemistry, Vol. III, Cellulose. New York, NY: Academic Press; 1963: 49-51.

Spaic M, Smal DP , Cook JR, Wan W. Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose. 2014; 21: 1529–1540.

Xu Y, Liu X, Liu X, Tan J, Zhu H. Influence of HNO3/H3PO4–NaNO2 mediated oxidation on the structure and properties of cellulose fibers. Carbohydr Polym. 2014; 111: 955-963.

Klemm D, Philipp B, Heinze T, Heinze U. Wagenknecht W. Comprehensive Cellulose Chemistry, Volume 1, Fundamentals and Analytical Methods. Weinheim, W: Wiley; 1998.

Saito T, Isogai A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions 420 on chemical and crystal structures of the water-insoluble fractions. Biomacromolecule. 2004; 5: 1983–1989.

Y.-S. Ho. Review of second-order models for adsorption systems. J Hazard Mater. 2006; 136(3): 681–689.

Gaitano O, Calvo N, Narda G, Kaufman T, Maggio R, Elena Brusau V. Preparation and Physical Characterization of a Diclofenac-Ranitidine Co-precipitate for Improving the Dissolution of Diclofenac. J Pharm Sci. 2016; 105: 1258-1268.

Burkinshaw SM. Physico-chemical Aspects of Textile Coloration. West Yorkshire, WY: Wiley; 2016.

CHEMICALIZE FEATURES. https://chemicalize.com/#/calculation, Accessed Dcember 28, 2017.

Kankkunen T. Controlled transdermal drug delivery by iontophoresis and ion-exchange fiber, Academic dissertation, Department of Pharmacy, University of Helsinki, 2002: 31. http://ethesis.helsinki.fi/julkaisut/mat/far¬ma/vk/kank¬kunen/con-troll.pdf

Ramya B, Vinod Kumar K, Ramalingam P, Ravindra Reddy J. UV derivative spectrophotometric method for simultaneous estimation of metaxalone and diclofenac potassium in combined dosage form. Int J Pharm Sci Res. 2012; 3(11): 4301-4305.

Široky J, Blackburn RS, Bechtold T, Taylor J, White P. Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose. 2010; 17: 103–115.

Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM. Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polymer degradation and stability. 2005; 88: 512-520.

Zhbankov RG. Infrared spectra of cellulose and its derivatives. New York, NY: Springer Science; 1966.

Niethard FU, Gold MS, Solomon GS, Liu JM, Unkauf M, Albrecht HH, Elkik F. Efficacy of topical diclofenac diethylamine gel in osteoarthritis of the knee. J Rheumatol. 2005; 32(12): 2384-2392.

Bissantz C, Kuhn B, Stahl M. A Medicinal Chemists Guide to Molecular Interactions. J Med Chem. 2010; 53(14): 5061–5084.