Evaluation of crosslinked gelatin-polyvinylpyrrolidone scaffold for application in drug delivery and tissue engineering Abstract
Main Article Content
Abstract
The objective of this study was to process and evaluate a suitable scaffold matrix system for drug delivery and tissue regeneration. A bioinspired approach was applied. The scaffold based on natural polymer gelatin, blended with polyvinylpyrrolidone, and crosslinked by genipin, was 3D printed by semi-solid extrusion (SSE). This 3D printing technique does not require high temperature or UV curing, so it allows the use of thermo- and UV-sensitive drugs, cells, or other biological components. The influence of genipin, a natural crosslinking agent, and its content on the mechanical properties and the cytotoxicity of obtained scaffolds were investigated.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
Funding data
-
Horizon 2020 Framework Programme
Grant numbers 952033
References
Jovanović M, Petrović M, Cvijić S, Tomić N, Stojanović D, Ibrić S, Uskoković P. 3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics 2021; 13: 2143. https://doi.org/10.3390/pharmaceutics13122143
Rao Z, Dong Y, Liu J, Zheng X, Pei Y., Tang K. Genipin-crosslinked gelatin-based composite hydrogels reinforced with amino-functionalized microfibrillated cellulose. Int. J. Biol. Macromol 2022; 222: 3155. https://doi.org/10.1016/j.ijbiomac.2022.10.088