ONE-DIMENSIONAL MODELING PREDICTIONS ON THE CHARACTERISTICS OF A CI ENGINE WITH DIESEL AND BIODIESEL BLEND

Original scientific paper

Authors

  • Saravanan Subramani Department of Mechanical Engineering, Sri Venkateswara College of Engineering, Chennai, India https://orcid.org/0000-0001-9250-8108
  • Sankar Manoharan Department of Mechanical Engineering, P.T.Lee Chengalvaraya Naicker College of Engineering & Technology, Kanchipuram, India https://orcid.org/0009-0009-1955-7494
  • Ravi Govindasamy Department of Automobile Engineering, Sri Venkateswara College of Engineering, Chennai, India https://orcid.org/0000-0002-0760-905X
  • Paul Durai Kumar Department of Automobile Engineering, Sri Venkateswara College of Engineering, Chennai, India https://orcid.org/0000-0002-9056-2693

DOI:

https://doi.org/10.2298/CICEQ250615002S

Keywords:

one-dimensional engine simulation model, biodiesel, diesel engine, emission, combustion

Abstract

The current study focused on utilizing an advanced modeling technique to create a one-dimensional model to analyze the full-cycle calculation of a compression ignition (CI) engine fuelled with a biodiesel blend to explore its performance and emission characteristics. The developed model is to solve the equations that govern conservation of energy and mass, which is used to find the rapid changes of gas exchange and combustion process as a function of crank angle degree. The combustion chamber was created as a one-dimensional model by simulation software, comprising two distinct zones: burned and unburned gases. Heat release and emission predictions were derived using simplified reaction mechanisms. The developed combustion model was integrated as a sub-model within the cylinder element of the one-dimensional solver, enabling the exchange of critical parameters such as cylinder pressure, mass fraction burned, and heat release rate at each crank-angle increment. The work focused on comparing the peak pressure, heat release rate, oxides of nitrogen, smoke, carbon monoxide, and brake specific fuel consumption of the created model with those of the results obtained from the experimental engine. By comparing the theoretical and experimental results, it was inferred that the theoretical model resulted in comparatively higher peak pressure (41%), higher heat release rate (10.38%), lower carbon monoxide (31%), and lower brake specific fuel consumption (4.7%) than that of the experimental engine for the biodiesel blend. The results of the current study showcased the feasibility of utilizing biodiesel in CI engines with better characteristics, which address the sustainable development goals.

References

[1] G. Geetesh, B.S. Chauhan, S.K.Mahla, H.M. Cho, Energy Rep. 5 (2019) 78-83. https://doi.org/10.1016/j.egyr.2018.12.002.

[2] A. Nayyar, D. Sharma, S.L. Soni, M. Alok, Environ. Sci. Pollut. Res. 24 (2017) 20315-20329. https://doi.org/10.1007/s11356-017-9599-8.

[3] F.A. Mohamed, S.K. Bhatti, Energy Procedia 52 (2014) 421-430. https://doi.org/10.1016/j.egypro.2014.07.094.

[4] J.H. Shahmirzae, M. Fallahipanah, G.M. Hashemi, L. Chen, Int. J. Environ. Sci. Technol. 11 (2014) 139–148. https://doi.org/10.1007/s13762-013-0274-4.

[5] A. Peyman, K. Esmail, A. Mortaza, T. Meisam, T.H. Anh, M. Hossein, H.N. Mohammad, H.B. Homa, M. Pouya, R.S. Taha, M. Omid, G. Haiping, P. Wanxi, S.L. Su, J. Hazard. Mater. 407 (2021)124369. https://doi.org/10.1016/j.jhazmat.2020.124369.

[6] A.P. Stelios, S.S. Nicholas, D.C. Theofanis, T.H. Dimitrios, Energy Convers. Manage. 153 (2017) 659-670. https://doi.org/10.1016/j.enconman.2017.10.007.

[7] C.R. Dimitrios, D.R. Constantine, M.K. George, G.G. Evangelos, Energy 202 (2020) 117685. https://doi.org/10.1016/j.energy.2020.117685.

[8] S. Enzhe, S. Xingchao, Y. Chong, L. Yue, Energy Convers. Manage. 178 (2018) 1-12. https://doi.org/10.1016/j.enconman.2018.10.014.

[9] D.R. Constantine, C.R. Dimitrios, C.M. George, M.K.George, Energy 157 (2018) 990-1014. https://doi.org/10.1016/j.energy.2018.05.178.

[10] D. Caglar, D. Cengiz, Energy Convers. Manage. 220 (2020) 113015. https://doi.org/10.1016/j.enconman.2020.113015.

[11] A. Alumah, S. Eran, E. Giora, Therm. Sci. Eng. Prog. 18 (2020) 100544. https://doi.org/10.1016/j.tsep.2020.100544.

[12] W. Shaohua, T.L. Chung, A. Jethro, M. Sebastian, Y. Wenming, K. Markus, Appl. Energy 258 (2020) 114083. https://doi.org/10.1016/j.apenergy.2019.114083.

[13] L. Grabowski, K. Pietrykowski, P. Karpinski, Propul. Power Res. 8 (2019) 300-309. https://doi.org/10.1016/j.jppr.2019.11.003.

[14] T.D. Hong, B.N. Nguyen, M.Q.Pham, T.V.Vu, S.H. Do. Results Eng. 22 (2024) 102243. https://doi.org/10.1016/j.rineng.2024.102243

[15] M.U. Saeed Akhtar, F.Asfand, M. Imran Khan, R. Mishra, A.D. Ball. Int. J. Hydrogen Energy 143 (2025) 454-467. https://doi.org/10.1016/j.ijhydene.2025.01.246

[16] T. Gaurav, S. Priybrat, Sustainable Energy Technol. Assess. 36 (2019) 100543. https://doi.org/10.1016/j.seta.2019.100543.

[17] P.R. Jose Antonio, V.G. Francisco, H.G. Jose, M.C. Jose, A.H. Daniel, Appl. Therm. Eng.144 (2018) 982-995. https://doi.org/10.1016/j.applthermaleng.2018.08.096

[18] M.F. Al Dawody, S.K. Bhatti, Energy Procedia. 52 (2014) 421-430.

https://doi.org/10.1016/j.egypro.2014.07.094.

[19] C.R. Ferguson, A.T. Kirkpatrick, Internal combustion engines, 3rd ed., John Wiley & Sons Ltd, West Sussex, England (2014). ISBN-13: 978-0471356172.

[20] J.B. Heywood, Internal Combustion Engine Fundamentals, 2nd ed., McGraw-Hill Education, New York (2018). https://www.accessengineeringlibrary.com/content/book/9781260116106.

[21] C. Olikara, G. Borman, SAE Technical Paper (1975) 750468. https://doi.org/10.4271/750468.

[22] R.B. Kreiger, G.L.Borman, The computation of apparent heat release for internal combustion engines, ASME, New York (1966). https://books.google.co.in/books?id=tO1EQwAACAAJ.

[23] JANAF Thermochemical Tables, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 37 (1971) NSRDS-NBS 37. https://srd.nist.gov/NSRDS/NSRDS-NBS37.pdf.

[24] L. Jinlong, E.D. Cosmin, Appl. Energy 248 (2019) 95-103. https://doi.org/10.1016/j.apenergy.2019.04.098

[25] M. Farzad, Y. Mortaza, Appl. Therm. Eng. 150 (2019) 329-347. https://doi.org/10.1016/j.applthermaleng.2018.12.158

[26] A. Sary, V. Edwin Geo, L. Khaled, T. Mohand, Fuel 106 (2013) 558-568. https://doi.org/10.1016/j.fuel.2012.11.051.

[27] M. Farzad, Y. Mortaza, R. Faramarz, Energy Convers. Manage. 198 (2019) 111782. https://doi.org/10.1016/j.enconman.2019.111782.

[28] K. Prithwish, X. Chao, S. Sibendu, T. Jacob, M.K. Chol-Bum, L. Simon, K. Goutham, J.P. William, Transp. Eng. 3 (2021) 100042. https://doi.org/10.1016/j.treng.2020.100042.

Downloads

Published

15.02.2026

Issue

Section

Article

How to Cite

ONE-DIMENSIONAL MODELING PREDICTIONS ON THE CHARACTERISTICS OF A CI ENGINE WITH DIESEL AND BIODIESEL BLEND: Original scientific paper. (2026). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ250615002S

Similar Articles

41-50 of 91

You may also start an advanced similarity search for this article.