Dye degradation using piperazine encapsulated biosynthesized iron nanoparticles
Original scientific paper
DOI:
https://doi.org/10.2298/CICEQ240904010SKeywords:
Dye degradation, Eryngium billardieri, iron nanoparticles, photocatalysis, piperazineAbstract
This study investigates the breakdown of aniline yellow dye using biosynthesized iron nanoparticles that uses extract from Eryngium billardieri. Piperazine encapsulation in a chlorinated environment increased degradation efficiency, reaching up to 92% in the dark and 96% under photocatalytic conditions. Ultraviolet-visible spectroscopy (331.24 nm, 243.19 nm), Fourier Transform Infrared Spectroscopy (Fe–O at 539 cm⁻¹, C–N at 1231 cm⁻¹), X-ray Diffraction analysis (peaks at 26.31° to 76.84°, indicating FCC structure), and Energy Dispersive Spectroscopy (Fe and Cl presence) were used to characterize the nanoparticles. The N-functionalities produced from piperazine and Fe2+ (712 eV) were validated by X-ray Photoelectron Spectroscopy. Spherical, evenly distributed particles (10–30 nm) with core-shell morphology were seen by Field Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. After encapsulation, Photoluminescence analysis showed less electron-hole recombination. Mesoporosity (type IV isotherms) was revealed by Brunauer-Emmett-Teller analysis, and the piperazine coating reduced surface area. Superparamagnetic behaviour with a blocking temperature close to 35K was found via magnetic measurements. High stability, catalytic efficiency, and potential for environmental remediation were all displayed by the encapsulated iron nanoparticles.
References
1. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, J. Environ. Manage. 182 (2016) 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090
2. S. Sudarshan, S. Harikrishnan, G. RathiBhuvaneswari, V. Alamelu, S. Aanand, A. Rajasekar, M. Govarthanan, J. Appl. Microbiol. 134 (2023) lxac064. https://doi.org/10.1093/jambio/lxac064
3. A. Srivastava, R.M. Rani, D.S. Patle, S. Kumar, J. Chem. Technol. Biotechnol. 97 (2022) 26-41. https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jctb.6891
4. M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, S.K. Tripathy, J. Environ. Chem. Eng. 9 (2021) 105277. https://doi.org/10.1016/j.jece.2021.105277
5. M.T. Islam, T. Islam, T. Islam, M.R. Repon, Text. Leather Rev. 5 (2022) 327-373. https://doi.org/10.31881/TLR.2022.27
6. P. Moradihamedani, Polym. Bull. 79 (2022) 2603-2631. https://doi.org/10.1007/s00289-021-03603-2
7. J. Chaudhary, G. Tailor, M. Yadav, C. Mehta, Biocatal. Agric. Biotechnol. 50 (2023) 102692. https://doi.org/10.1016/j.bcab.2023.102692
8. H. Liu, C. Wang, G. Wang, Chem. - Asian J. 15 (2020) 3239-3253. https://doi.org/10.1002/asia.202000895
9. K. Fedorov, K. Dinesh, X. Sun, R. D. C. Soltani, Z. Wang, S. Sonawane, G. Boczkaj, Chem. Eng. J. 432 (2022) 134191. https://doi.org/10.1016/j.cej.2021.134191
10. N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary, M. Sonker, ACS Appl. Nano Mater. 4 (2021) 11428-11457. http://doi.org/10.1021/acsanm.1c02946
11. A. Hosseingholian, S.D. Gohari, F. Feirahi, F. Moammeri, G. Mesbahian, Z.S. Moghaddam, Q. Ren, Mater. Today Sustain. 1 (2023) 100500. https://doi.org/10.1016/j.mtsust.2023.100500
12. J.A. Aboyewa, N.R. Sibuyi, M. Meyer, O.O. Oguntibeju, Plants 10 (2021) 1929. https://doi.org/10.3390%2Fplants10091929
13. S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, A.K. Oyebamiji, Heliyon 6(7) (2020) e04508. https://doi.org/10.1016/j.heliyon.2020.e04508
14. A.M. Alswieleh, ACS Appl. Polym. Mater. 5 (2023) 1334-1343. http://doi.org/10.1021/acsapm.2c01852
15. P.A. Atmianlu, R. Badpa, V. Aghabalaei, M. Baghdadi, J. Environ. Chem. Eng. 9 (2021) 106514. http://doi.org/10.1016/j.jece.2021.106514
16. P. Kumar, A. Kaushik, S. Kumar, N. Thakur, Phys. Scr. 99 (2024) 105960. https://doi.org/10.1088/1402-4896/ad7329
17. S. Sharma, M. Devi, P. Kumar, N. Thakur, K. Kumar, K. Jeet, N. Thakur, Toxicol. Environ. Chem. 107 (2025) 178–206. https://doi.org/10.1080/02772248.2024.2448952
18. P. Kumar, V. Arya, A. Kumar, N. Thakur, Int. J. Mater. Res. 116 (2025) 30–49. https://doi.org/10.1515/ijmr-2023-0343
19. N. Verma, D. Pathak, K. Kumar, K. Jeet, S. Nimesh, L. Loveleen, N. Thakur, Mater. Chem. Phys. 333 (2025) 130422. https://doi.org/10.1016/j.matchemphys.2024.130422
20. M. Devi, S. Sharma, P. Kumar, N. Thakur, G. Kumar, M.V. Sharma, N. Thakur, Colloids Surf. C Environ. Asp. 2 (2024) 100046. https://doi.org/10.1016/j.colsurfc.2024.100046
21. P. Kumar, S. Kumar, A. Tapwal, S. Nimesh, N. Thakur, Sustain. Chem. Environ. 8 (2024) 100160. https://doi.org/10.1016/j.rsce.2024.100160
22. S. Thakur, P. Kumar, N. Thakur, K. Kumar, K. Jeet, S. Kumar, N. Thakur, J. Indian Chem. Soc. 101199 (2024). https://doi.org/10.1016/j.jics.2024.101199
23. P. Kumar, N. Thakur, K. Kumar, S. Kumar, A. Dutt, V.K. Thakur, N. Thakur, Coord. Chem. Rev. 507 (2024) 215750. https://doi.org/10.1016/j.ccr.2024.215750
24. A. Rana, P. Kumar, N. Thakur, S. Kumar, K. Kumar, N. Thakur, Nano-Struct. Nano-Objects 38 (2024) 101188. https://doi.org/10.1016/j.nanoso.2024.101188
25. R. Kumar, S. Kaushal, N. Verma, P. Kumar, N. Thakur, A. Kumar, N. Thakur, J. Mol. Liq. 126254 (2024). https://doi.org/10.1016/j.molliq.2024.126254
26. N. Thakur, N. Thakur, J. Mater. Sci. Mater. Electron. 35 (2024) 134. https://doi.org/10.1007/s10854-023-11851-3
27. P. Kumar, D. Pathak, N. Thakur, Emerg. Mater. (2024) 1-17. https://doi.org/10.1007/s42247-024-00742-w
28. P. Kumar, A. Tapwal, S. Kumar, N. Thakur, Adv. Nat. Sci. Nanosci. Nanotechnol. 15 (2024) 025014. https://doi.org/10.1088/2043-6262/ad50bb
29. N. Thakur, P. Kumar, Int. J. Nanosci. 23 (2024) 2450010. https://doi.org/10.1142/S0219581X24500108
30. N. Verma, D. Pathak, N. Thakur, Next Mater. 5 (2024) 100271. https://doi.org/10.1016/j.nextmat.2024.100271
31. N. Thakur, P. Kumar, Int. J. Nanosci. 23 (2024) 2450010. https://doi.org/10.1142/S0219581X24500108
32. N. Thakur, N. Thakur, K. Kumar, V. Arya, A. Kumar, S. Kalia, Biomater. Polym. Horiz. 1 (2022) Article 330. https://www.ojs.bdtopten.com/33015.eaapublishing/index.php/bph/article/view/330
33. N. Thakur, N. Thakur, J. Dispersion Sci. Technol. (2024) 1–16. https://doi.org/10.1080/01932691.2024.2312841
34. A. Balkrishna, N. Thakur, B. Patial, S. Sharma, A. Kumar, V. Arya, R. Amarowicz, Processes 11 (2023) 1479. https://doi.org/10.3390/pr11051479
35. M.S. Daneshzadeh, H. Abbaspour, L. Amjad, A.M. Nafchi, J. Food Meas. Charact. 14 (2020) 708-715. https://doi.org/10.1007/s11694-019-00317-y
36. I.A. Radini, N. Hasan, M.A. Malik, Z. Khan, J. Photochem. Photobiol. B: Biol. 183 (2018) 154-163. https://doi.org/10.1016/j.jphotobiol.2018.04.014
37. S.H. Nguyen, N.T. Vu, H. Van Nguyen, B. Nguyen, T.T. Luong, Environ. Sci. Nano (2025). https://doi.org/10.1039/D4EN00843J
38. L. Xu, H.W. Liang, Y. Yang, S.H. Yu, Chem. Rev. 118 (2018) 3209-3250. https://doi.org/10.1021/acs.chemrev.7b00208
39. M. Chadha, A. Garg, A. Bhalla, S. Berry, Tetrahedron 150 (2023) 133741. https://doi.org/10.1016/j.tet.2023.133741
40. M. Kikowska, M. Dworacka, I. Kędziora, B. Thiem, Rev. Bras. Farmacogn. 26 (2016) 392-399. https://doi.org/10.1016/j.bjp.2016.01.008
41. S. SenGupta, N. Maiti, R. Chadha, S. Kapoor, Chem. Phys. 436 (2014) 55-62. https://doi.org/10.1016/j.chemphys.2014.03.011
42. D.S. Pattanayak, D. Pal, C. Thakur, S. Kumar, G.L. Devnani, Mater. Today: Proc. 44 (2021) 3150-3155. http://doi.org/10.1016/j.matpr.2021.02.821
43. H.N. Prasad, A.P. Ananda, S. Sumathi, K. Swathi, K.J. Rakesh, H.S. Jayanth, P. Mallu, J. Mol. Struct. 1268 (2022) 133683. https://doi.org/10.1016/j.molstruc.2022.133683
44. H. Feizi, N. Mollania, H. Mollania, F. Mollania, Research Square (2022) PPR581050 http://doi.org/10.21203/rs.3.rs-2338838/v1
45. K. Subashini, S. Periandy, J. Mol. Struct. 1134 (2017) 157-170. https://doi.org/10.1016/j.molstruc.2016.12.048
46. N. Sidkey. Al-Azhar, J. Pharm. Sci. 62(2) (2020) 164-179. http://doi.org/10.21608/ajps.2020.118382
47. K. Velsankar, G. Parvathy, S. Mohandoss, M. Krishna Kumar, S. Sudhahar, J. Nanostruct. Chem. 12 (2021) 625-640. https://doi.org/10.1007/s40097-021-00434-5
48. M. Kaur, D.S. Chopra, Glob. J. Nanomed. 4(4) (2018) 68-76. hhttp://doi.org/10.19080/GJN.2018.04.555643tps://doi.org/
49. M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Molecules 18(5) (2013) 5954-5964. https://doi.org/10.3390/molecules18055954
50. R. Duglet, D. Sharma, V. Singh, D. Sharma, M. Singh, Solid State Commun. 396 (2025) 115761. https://doi.org/10.1016/j.ssc.2024.115761
51. A.R. Pradipta, A. Irunsah, Indones. J. Chem. Stud. 1 (2022) 8-12. https://doi.org/10.55749/ijcs.v1i1.7
52. T. Zhang, X. Jin, G. Owens, Z. Chen, J. Colloid Interface Sci. 594 (2021) 398-408. https://doi.org/10.1016/j.jcis.2021.03.065
53. R. Foroutan, R. Mohammadi, A. Ahmadi, G. Bikhabar, F. Babaei, B. Ramavandi, Chemosphere 286 (2022) 131632. https://doi.org/10.1016/j.chemosphere.2021.131632
54. N. Maghsoudy, P.A. Azar, M.S. Tehrani, S.W. Husain, K. Larijani, J. Nanostruct. Chem. 9 (2019) 203-216. http://doi.org/10.1007/s40097-019-0311-z
55. A. Ropp, R. F. André, S. Carenco, ChemPlusChem 88(11) (2023) e202300469. https://doi.org/10.1002/cplu.202300469
56. N.H. Anh, D.V. Nguyen, T.A. Luu, P.D.M. Phan, H.P. Toan, P.P. Ly, H.T. Vuong, Sol. RRL 8 (2024) 2400034. http://dx.doi.org/10.1002/solr.202400034
57. C.C. Ong, R. Jose, M.S.M. Saheed, Chem. Eng. J. 388 (2020) 124306. https://doi.org/10.1016/j.cej.2020.124306
58. C.J. Weststrate, D. Sharma, D. Garcia Rodriguez, M.A. Gleeson, H.O. Fredriksson, J.W. Niemantsverdriet, Nat. Commun. 11 (2020) 750. https://doi.org/10.1038/s41467-020-14613-5
59. P. Nagaraju, C. Srilakshmi, N. Pasha, N. Lingaiah, I. Suryanarayana, P.S. Prasad, Appl. Catal. A Gen. 334 (2008) 10-19. https://doi.org/10.1016/j.apcata.2007.04.024
60. M. Chandran, D. Yuvaraj, L. Christudhas, K.V. Ramesh, Biotechnol. Indian J. 12(12) (2016) 112. https://www.tsijournals.com/articles/biosynthesis-of-iron-NPs-using-the-brown-seaweed-dictyota-dicotoma.html
61. E. Alphandéry, Int. J. Pharm. 586 (2020) 119472. https://doi.org/10.1016/j.ijpharm.2020.119472
62. A. Miri, H. Najafzadeh, M. Darroudi, M.J. Miri, M.A.J. Kouhbanani, M. Sarani, ChemistryOpen 10(3), (2021), 327-333. https://doi.org/10.1002/open.202000186
63. N. Kobylinska, D. Klymchuk, A. Shakhovsky, O. Khainakova, Y. Ratushnyak, V. Duplij, N. Matvieieva, RSC Adv. 11(43) (2021) 26974-26987. http://doi.org/10.1039/D1RA04080D
64. T. Suneetha, S. Kundu, S.C. Kashyap, H.C. Gupta, T.K. Nath, J. Nanosci. Nanotechnol. 13(1) (2013) 270-278. https://doi.org/10.1166/jnn.2013.7092
65. M. Kin, H. Kura, T. Ogawa. AIP Adv. 6(12) (2016) 125013. https://doi.org/10.1063/1.4972059
66. T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Sci. Total Environ. 466 (2014) 210-213. https://doi.org/10.1016/j.scitotenv.2013.07.022
67. A. Rufus, N. Sreeju, D. Philip, J. Phys. Chem. Solids 124 (2019) 221-234. https://doi.org/10.1016/j.jpcs.2018.09.026
68. J. Xu, D. Bhattacharyya, Ind. Eng. Chem. Res. 46 (2007) 2348-2359. https://doi.org/10.1021/ie0611498
69. L. Zhou, Y. He, S. Gou, Q. Zhang, L. Liu, L. Tang, M. Duan, Chem. Eng. J. 383 (2020) 123190. https://doi.org/10.1016/j.cej.2019.123190
70. C. Rodríguez-Rasero, V. Montes-Jimenez, M.F. Alexandre-Franco, C. Fernández-González, J. Píriz-Tercero, E.M. Cuerda-Correa, Water 16 (2024) 1607. https://doi.org/10.3390/w16111607
71. W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, T. Yu, Energy Environ. Sci. 4 (2011) 4954-4961. https://doi.org/10.1039/C1EE02168K
72. Y. Mansourpanah, A. Rahimpour, M. Tabatabaei, L. Bennett, Desalination 419 (2017) 79-87. https://doi.org/10.1016/j.desal.2017.06.006
73. Y. Wang, T. Xiao, S. Zuo, J. Wan, Z. Yan, B. Zhu, X. Zhang, J. Hazard. Mater. 446 (2023) 130698. https://doi.org/10.1016/j.jhazmat.2022.130698
74. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, J. Alloys Compd. 553 (2013) 19-29. https://doi.org/10.1016/j.jallcom.2012.10.038
75. M. Nemiwal, T.C. Zhang, D. Kumar, Sci. Total Environ. 767 (2021) 144896. http://doi.org/10.1016/j.scitotenv.2020.144896
76. I. Anastopoulos, A. Hosseini-Bandegharaei, J. Fu, A.C. Mitropoulos, G.Z. Kyzas, J. Dispersion Sci. Technol. 39(6) (2018) 836-847. http://doi.org/10.1080/01932691.2017.1398661
77. M. Arellano-Cortaza, E. Ramírez-Morales, U. Pal, G. Pérez-Hernández, L. Rojas-Blanco, Ceram. Int. 47(19) (2021) 27469-27478. http://doi.org/10.1016/j.ceramint.2021.06.170
78. S.H. Ribut, C.A.C. Abdullah, M. Mustafa, M.Z.M. Yusoff, S.N.A. Azman. Mater. Res. Express 6(2) (2018) 025016. http://doi.org/10.1088/2053-1591/aaecbc
79. M. Devi, S. Sharma, P. Kumar, N. Thakur, G. Kumar, M.V. Sharma, N. Thakur, Colloids Surf. C Environ. Asp. 2 (2024) 100046. https://doi.org/10.1016/j.colsuc.2024.100046
80. N. Thakur, N. Thakur, A. Kumar, V.K. Thakur, S. Kalia, V. Arya, G.Z. Kyzas, Sci. Total Environ. 169815 (2024). https://doi.org/10.1016/j.scitotenv.2023.169815
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Sathiya Selvaraj, Durairaj Sankaran, Ilangkumaran Mani

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.