Dye degradation using piperazine encapsulated biosynthesized iron nanoparticles

Original scientific paper

Authors

  • Sathiya Selvaraj Department of Chemistry, Selvam College of Technology, Namakkal, Tamil Nadu, India
  • Durairaj Sankaran Department of Electrical & Electronics Engineering, Annapoorna Engineering College, Salem, Tamil Nadu, India
  • Ilangkumaran Mani Department of Mechanical Engineering, Knowledge Institute of Technology, Salem, Tamil Nadu, India

DOI:

https://doi.org/10.2298/CICEQ240904010S

Keywords:

Dye degradation, Eryngium billardieri, iron nanoparticles, photocatalysis, piperazine

Abstract

This study investigates the breakdown of aniline yellow dye using biosynthesized iron nanoparticles that uses extract from Eryngium billardieri. Piperazine encapsulation in a chlorinated environment increased degradation efficiency, reaching up to 92% in the dark and 96% under photocatalytic conditions. Ultraviolet-visible spectroscopy (331.24 nm, 243.19 nm), Fourier Transform Infrared Spectroscopy (Fe–O at 539 cm⁻¹, C–N at 1231 cm⁻¹), X-ray Diffraction analysis (peaks at 26.31° to 76.84°, indicating FCC structure), and Energy Dispersive Spectroscopy (Fe and Cl presence) were used to characterize the nanoparticles. The N-functionalities produced from piperazine and Fe2+ (712 eV) were validated by X-ray Photoelectron Spectroscopy. Spherical, evenly distributed particles (10–30 nm) with core-shell morphology were seen by Field Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. After encapsulation, Photoluminescence analysis showed less electron-hole recombination. Mesoporosity (type IV isotherms) was revealed by Brunauer-Emmett-Teller analysis, and the piperazine coating reduced surface area. Superparamagnetic behaviour with a blocking temperature close to 35K was found via magnetic measurements. High stability, catalytic efficiency, and potential for environmental remediation were all displayed by the encapsulated iron nanoparticles. 

References

1. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, J. Environ. Manage. 182 (2016) 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090

2. S. Sudarshan, S. Harikrishnan, G. RathiBhuvaneswari, V. Alamelu, S. Aanand, A. Rajasekar, M. Govarthanan, J. Appl. Microbiol. 134 (2023) lxac064. https://doi.org/10.1093/jambio/lxac064

3. A. Srivastava, R.M. Rani, D.S. Patle, S. Kumar, J. Chem. Technol. Biotechnol. 97 (2022) 26-41. https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jctb.6891

4. M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, S.K. Tripathy, J. Environ. Chem. Eng. 9 (2021) 105277. https://doi.org/10.1016/j.jece.2021.105277

5. M.T. Islam, T. Islam, T. Islam, M.R. Repon, Text. Leather Rev. 5 (2022) 327-373. https://doi.org/10.31881/TLR.2022.27

6. P. Moradihamedani, Polym. Bull. 79 (2022) 2603-2631. https://doi.org/10.1007/s00289-021-03603-2

7. J. Chaudhary, G. Tailor, M. Yadav, C. Mehta, Biocatal. Agric. Biotechnol. 50 (2023) 102692. https://doi.org/10.1016/j.bcab.2023.102692

8. H. Liu, C. Wang, G. Wang, Chem. - Asian J. 15 (2020) 3239-3253. https://doi.org/10.1002/asia.202000895

9. K. Fedorov, K. Dinesh, X. Sun, R. D. C. Soltani, Z. Wang, S. Sonawane, G. Boczkaj, Chem. Eng. J. 432 (2022) 134191. https://doi.org/10.1016/j.cej.2021.134191

10. N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary, M. Sonker, ACS Appl. Nano Mater. 4 (2021) 11428-11457. http://doi.org/10.1021/acsanm.1c02946

11. A. Hosseingholian, S.D. Gohari, F. Feirahi, F. Moammeri, G. Mesbahian, Z.S. Moghaddam, Q. Ren, Mater. Today Sustain. 1 (2023) 100500. https://doi.org/10.1016/j.mtsust.2023.100500

12. J.A. Aboyewa, N.R. Sibuyi, M. Meyer, O.O. Oguntibeju, Plants 10 (2021) 1929. https://doi.org/10.3390%2Fplants10091929

13. S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, A.K. Oyebamiji, Heliyon 6(7) (2020) e04508. https://doi.org/10.1016/j.heliyon.2020.e04508

14. A.M. Alswieleh, ACS Appl. Polym. Mater. 5 (2023) 1334-1343. http://doi.org/10.1021/acsapm.2c01852

15. P.A. Atmianlu, R. Badpa, V. Aghabalaei, M. Baghdadi, J. Environ. Chem. Eng. 9 (2021) 106514. http://doi.org/10.1016/j.jece.2021.106514

16. P. Kumar, A. Kaushik, S. Kumar, N. Thakur, Phys. Scr. 99 (2024) 105960. https://doi.org/10.1088/1402-4896/ad7329

17. S. Sharma, M. Devi, P. Kumar, N. Thakur, K. Kumar, K. Jeet, N. Thakur, Toxicol. Environ. Chem. 107 (2025) 178–206. https://doi.org/10.1080/02772248.2024.2448952

18. P. Kumar, V. Arya, A. Kumar, N. Thakur, Int. J. Mater. Res. 116 (2025) 30–49. https://doi.org/10.1515/ijmr-2023-0343

19. N. Verma, D. Pathak, K. Kumar, K. Jeet, S. Nimesh, L. Loveleen, N. Thakur, Mater. Chem. Phys. 333 (2025) 130422. https://doi.org/10.1016/j.matchemphys.2024.130422

20. M. Devi, S. Sharma, P. Kumar, N. Thakur, G. Kumar, M.V. Sharma, N. Thakur, Colloids Surf. C Environ. Asp. 2 (2024) 100046. https://doi.org/10.1016/j.colsurfc.2024.100046

21. P. Kumar, S. Kumar, A. Tapwal, S. Nimesh, N. Thakur, Sustain. Chem. Environ. 8 (2024) 100160. https://doi.org/10.1016/j.rsce.2024.100160

22. S. Thakur, P. Kumar, N. Thakur, K. Kumar, K. Jeet, S. Kumar, N. Thakur, J. Indian Chem. Soc. 101199 (2024). https://doi.org/10.1016/j.jics.2024.101199

23. P. Kumar, N. Thakur, K. Kumar, S. Kumar, A. Dutt, V.K. Thakur, N. Thakur, Coord. Chem. Rev. 507 (2024) 215750. https://doi.org/10.1016/j.ccr.2024.215750

24. A. Rana, P. Kumar, N. Thakur, S. Kumar, K. Kumar, N. Thakur, Nano-Struct. Nano-Objects 38 (2024) 101188. https://doi.org/10.1016/j.nanoso.2024.101188

25. R. Kumar, S. Kaushal, N. Verma, P. Kumar, N. Thakur, A. Kumar, N. Thakur, J. Mol. Liq. 126254 (2024). https://doi.org/10.1016/j.molliq.2024.126254

26. N. Thakur, N. Thakur, J. Mater. Sci. Mater. Electron. 35 (2024) 134. https://doi.org/10.1007/s10854-023-11851-3

27. P. Kumar, D. Pathak, N. Thakur, Emerg. Mater. (2024) 1-17. https://doi.org/10.1007/s42247-024-00742-w

28. P. Kumar, A. Tapwal, S. Kumar, N. Thakur, Adv. Nat. Sci. Nanosci. Nanotechnol. 15 (2024) 025014. https://doi.org/10.1088/2043-6262/ad50bb

29. N. Thakur, P. Kumar, Int. J. Nanosci. 23 (2024) 2450010. https://doi.org/10.1142/S0219581X24500108

30. N. Verma, D. Pathak, N. Thakur, Next Mater. 5 (2024) 100271. https://doi.org/10.1016/j.nextmat.2024.100271

31. N. Thakur, P. Kumar, Int. J. Nanosci. 23 (2024) 2450010. https://doi.org/10.1142/S0219581X24500108

32. N. Thakur, N. Thakur, K. Kumar, V. Arya, A. Kumar, S. Kalia, Biomater. Polym. Horiz. 1 (2022) Article 330. https://www.ojs.bdtopten.com/33015.eaapublishing/index.php/bph/article/view/330

33. N. Thakur, N. Thakur, J. Dispersion Sci. Technol. (2024) 1–16. https://doi.org/10.1080/01932691.2024.2312841

34. A. Balkrishna, N. Thakur, B. Patial, S. Sharma, A. Kumar, V. Arya, R. Amarowicz, Processes 11 (2023) 1479. https://doi.org/10.3390/pr11051479

35. M.S. Daneshzadeh, H. Abbaspour, L. Amjad, A.M. Nafchi, J. Food Meas. Charact. 14 (2020) 708-715. https://doi.org/10.1007/s11694-019-00317-y

36. I.A. Radini, N. Hasan, M.A. Malik, Z. Khan, J. Photochem. Photobiol. B: Biol. 183 (2018) 154-163. https://doi.org/10.1016/j.jphotobiol.2018.04.014

37. S.H. Nguyen, N.T. Vu, H. Van Nguyen, B. Nguyen, T.T. Luong, Environ. Sci. Nano (2025). https://doi.org/10.1039/D4EN00843J

38. L. Xu, H.W. Liang, Y. Yang, S.H. Yu, Chem. Rev. 118 (2018) 3209-3250. https://doi.org/10.1021/acs.chemrev.7b00208

39. M. Chadha, A. Garg, A. Bhalla, S. Berry, Tetrahedron 150 (2023) 133741. https://doi.org/10.1016/j.tet.2023.133741

40. M. Kikowska, M. Dworacka, I. Kędziora, B. Thiem, Rev. Bras. Farmacogn. 26 (2016) 392-399. https://doi.org/10.1016/j.bjp.2016.01.008

41. S. SenGupta, N. Maiti, R. Chadha, S. Kapoor, Chem. Phys. 436 (2014) 55-62. https://doi.org/10.1016/j.chemphys.2014.03.011

42. D.S. Pattanayak, D. Pal, C. Thakur, S. Kumar, G.L. Devnani, Mater. Today: Proc. 44 (2021) 3150-3155. http://doi.org/10.1016/j.matpr.2021.02.821

43. H.N. Prasad, A.P. Ananda, S. Sumathi, K. Swathi, K.J. Rakesh, H.S. Jayanth, P. Mallu, J. Mol. Struct. 1268 (2022) 133683. https://doi.org/10.1016/j.molstruc.2022.133683

44. H. Feizi, N. Mollania, H. Mollania, F. Mollania, Research Square (2022) PPR581050 http://doi.org/10.21203/rs.3.rs-2338838/v1

45. K. Subashini, S. Periandy, J. Mol. Struct. 1134 (2017) 157-170. https://doi.org/10.1016/j.molstruc.2016.12.048

46. N. Sidkey. Al-Azhar, J. Pharm. Sci. 62(2) (2020) 164-179. http://doi.org/10.21608/ajps.2020.118382

47. K. Velsankar, G. Parvathy, S. Mohandoss, M. Krishna Kumar, S. Sudhahar, J. Nanostruct. Chem. 12 (2021) 625-640. https://doi.org/10.1007/s40097-021-00434-5

48. M. Kaur, D.S. Chopra, Glob. J. Nanomed. 4(4) (2018) 68-76. hhttp://doi.org/10.19080/GJN.2018.04.555643tps://doi.org/

49. M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Molecules 18(5) (2013) 5954-5964. https://doi.org/10.3390/molecules18055954

50. R. Duglet, D. Sharma, V. Singh, D. Sharma, M. Singh, Solid State Commun. 396 (2025) 115761. https://doi.org/10.1016/j.ssc.2024.115761

51. A.R. Pradipta, A. Irunsah, Indones. J. Chem. Stud. 1 (2022) 8-12. https://doi.org/10.55749/ijcs.v1i1.7

52. T. Zhang, X. Jin, G. Owens, Z. Chen, J. Colloid Interface Sci. 594 (2021) 398-408. https://doi.org/10.1016/j.jcis.2021.03.065

53. R. Foroutan, R. Mohammadi, A. Ahmadi, G. Bikhabar, F. Babaei, B. Ramavandi, Chemosphere 286 (2022) 131632. https://doi.org/10.1016/j.chemosphere.2021.131632

54. N. Maghsoudy, P.A. Azar, M.S. Tehrani, S.W. Husain, K. Larijani, J. Nanostruct. Chem. 9 (2019) 203-216. http://doi.org/10.1007/s40097-019-0311-z

55. A. Ropp, R. F. André, S. Carenco, ChemPlusChem 88(11) (2023) e202300469. https://doi.org/10.1002/cplu.202300469

56. N.H. Anh, D.V. Nguyen, T.A. Luu, P.D.M. Phan, H.P. Toan, P.P. Ly, H.T. Vuong, Sol. RRL 8 (2024) 2400034. http://dx.doi.org/10.1002/solr.202400034

57. C.C. Ong, R. Jose, M.S.M. Saheed, Chem. Eng. J. 388 (2020) 124306. https://doi.org/10.1016/j.cej.2020.124306

58. C.J. Weststrate, D. Sharma, D. Garcia Rodriguez, M.A. Gleeson, H.O. Fredriksson, J.W. Niemantsverdriet, Nat. Commun. 11 (2020) 750. https://doi.org/10.1038/s41467-020-14613-5

59. P. Nagaraju, C. Srilakshmi, N. Pasha, N. Lingaiah, I. Suryanarayana, P.S. Prasad, Appl. Catal. A Gen. 334 (2008) 10-19. https://doi.org/10.1016/j.apcata.2007.04.024

60. M. Chandran, D. Yuvaraj, L. Christudhas, K.V. Ramesh, Biotechnol. Indian J. 12(12) (2016) 112. https://www.tsijournals.com/articles/biosynthesis-of-iron-NPs-using-the-brown-seaweed-dictyota-dicotoma.html

61. E. Alphandéry, Int. J. Pharm. 586 (2020) 119472. https://doi.org/10.1016/j.ijpharm.2020.119472

62. A. Miri, H. Najafzadeh, M. Darroudi, M.J. Miri, M.A.J. Kouhbanani, M. Sarani, ChemistryOpen 10(3), (2021), 327-333. https://doi.org/10.1002/open.202000186

63. N. Kobylinska, D. Klymchuk, A. Shakhovsky, O. Khainakova, Y. Ratushnyak, V. Duplij, N. Matvieieva, RSC Adv. 11(43) (2021) 26974-26987. http://doi.org/10.1039/D1RA04080D

64. T. Suneetha, S. Kundu, S.C. Kashyap, H.C. Gupta, T.K. Nath, J. Nanosci. Nanotechnol. 13(1) (2013) 270-278. https://doi.org/10.1166/jnn.2013.7092

65. M. Kin, H. Kura, T. Ogawa. AIP Adv. 6(12) (2016) 125013. https://doi.org/10.1063/1.4972059

66. T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Sci. Total Environ. 466 (2014) 210-213. https://doi.org/10.1016/j.scitotenv.2013.07.022

67. A. Rufus, N. Sreeju, D. Philip, J. Phys. Chem. Solids 124 (2019) 221-234. https://doi.org/10.1016/j.jpcs.2018.09.026

68. J. Xu, D. Bhattacharyya, Ind. Eng. Chem. Res. 46 (2007) 2348-2359. https://doi.org/10.1021/ie0611498

69. L. Zhou, Y. He, S. Gou, Q. Zhang, L. Liu, L. Tang, M. Duan, Chem. Eng. J. 383 (2020) 123190. https://doi.org/10.1016/j.cej.2019.123190

70. C. Rodríguez-Rasero, V. Montes-Jimenez, M.F. Alexandre-Franco, C. Fernández-González, J. Píriz-Tercero, E.M. Cuerda-Correa, Water 16 (2024) 1607. https://doi.org/10.3390/w16111607

71. W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, T. Yu, Energy Environ. Sci. 4 (2011) 4954-4961. https://doi.org/10.1039/C1EE02168K

72. Y. Mansourpanah, A. Rahimpour, M. Tabatabaei, L. Bennett, Desalination 419 (2017) 79-87. https://doi.org/10.1016/j.desal.2017.06.006

73. Y. Wang, T. Xiao, S. Zuo, J. Wan, Z. Yan, B. Zhu, X. Zhang, J. Hazard. Mater. 446 (2023) 130698. https://doi.org/10.1016/j.jhazmat.2022.130698

74. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, J. Alloys Compd. 553 (2013) 19-29. https://doi.org/10.1016/j.jallcom.2012.10.038

75. M. Nemiwal, T.C. Zhang, D. Kumar, Sci. Total Environ. 767 (2021) 144896. http://doi.org/10.1016/j.scitotenv.2020.144896

76. I. Anastopoulos, A. Hosseini-Bandegharaei, J. Fu, A.C. Mitropoulos, G.Z. Kyzas, J. Dispersion Sci. Technol. 39(6) (2018) 836-847. http://doi.org/10.1080/01932691.2017.1398661

77. M. Arellano-Cortaza, E. Ramírez-Morales, U. Pal, G. Pérez-Hernández, L. Rojas-Blanco, Ceram. Int. 47(19) (2021) 27469-27478. http://doi.org/10.1016/j.ceramint.2021.06.170

78. S.H. Ribut, C.A.C. Abdullah, M. Mustafa, M.Z.M. Yusoff, S.N.A. Azman. Mater. Res. Express 6(2) (2018) 025016. http://doi.org/10.1088/2053-1591/aaecbc

79. M. Devi, S. Sharma, P. Kumar, N. Thakur, G. Kumar, M.V. Sharma, N. Thakur, Colloids Surf. C Environ. Asp. 2 (2024) 100046. https://doi.org/10.1016/j.colsuc.2024.100046

80. N. Thakur, N. Thakur, A. Kumar, V.K. Thakur, S. Kalia, V. Arya, G.Z. Kyzas, Sci. Total Environ. 169815 (2024). https://doi.org/10.1016/j.scitotenv.2023.169815

Published

— Updated on 19.05.2025

Issue

Section

Articles

How to Cite

Dye degradation using piperazine encapsulated biosynthesized iron nanoparticles: Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ240904010S

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.