Development and characterization of electrochemical sensors based on carbon modified with TiO2 nanoparticles Original scientific paper

Main Article Content

Saša Mićin
Borislav Malinović
Tijana Đuričić


The aim of this study is the development and characterization of a carbon-based elec­trochemical sensor, modified with TiO2 nanoparticles for potential application in electroanalytical techniques. The influence of binder and modifier contents on morphological, physicochemical and electrochemical characteristics of the electro­de material was investigated in order to determine the optimal ratio of the carbon material/binder/modifier. Carbon pastes were prepared from mixtures containing graphite powder, TiO2 nanoparticles and liquid hydrocarbons. Scanning electron microscopy showed that the electrode material becomes more compact with the addition and the increase in the binder material content, while increasing the proportion of TiO2 nanoparticles did not have any significant effect on the material morphology showing fairly homogeneous nanoparticle distribution in the graphite electrode material. The test results indicate that the modified carbon paste with 40 vol.% paraffin oil (PO) and 6-8 wt.% TiO2 nanoparticles is characterized by the lowest value of specific resistance. By applying cyclic voltammetry, the most pronounced degree of reversibility was obtained in relation to the standard reversible redox system ([Fe (CN)]-3/-4) for the electrode material with 30–40 vol.% PO and 8-10 wt.% TiO2 nanoparticles. Characterization of the electrode material based on carbon modified with TiO2 nanoparticles indicated that the optimal composition contains 40 vol.% PO and 6-8 wt.% TiO2 nanoparticles, which is important for application in electroanalytical techniques.


Download data is not yet available.

Article Details

How to Cite
Mićin, S., Malinović, B. ., & Đuričić, T. (2022). Development and characterization of electrochemical sensors based on carbon modified with TiO2 nanoparticles: Original scientific paper. HEMIJSKA INDUSTRIJA (Chemical Industry), 76(3), 147–158.
Chemical Engineering - Electrochemical Engineering


Švancara I, Walcarius A, Kalcher K, Vytřas K. Carbon paste electrodes in the new Millennium. Cent Eur J Chem. 2009; 7(4): 598-656

Švancara I, Metelka R, Mikysek T, Vytřas K. 30 years with carbon paste electrodes at the University of Pardubice. SciPap. 2017; Series A 23: 5-50.

Guzsvány V, Papp Z, Švancara I, Vytras K. Insecticides - Advances in Integrated pest management. In: Insecticides – Advances in Integrated Pest Management. Rijeka, Hrvatska, 2012, pp. 541-578

Švancara I, Kalcher K, Walcarius A, Vytřas K. Electroanalysis with Carbon Paste Electrodes. Boca Raton, CRC Press, Taylor&FrancisGroup; 2012

Luo X, Morrin A, Killard AJ, Smyth MR. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis. 2006; 18(4): 319–326

Wongkaew N, Simsek M, Griesche Ch, Baeumner AJ. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev. 2019; 119(1): 120–194

Brainina Kh, Stozhko N, Bukharinova M, Vikulova E. Nanomaterials: Electrochemical Properties and Application in Sensor Phys Sci Rev. 2018; 3(9): 201880050

Katz E, Willner I, Wang J. Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles. Electroanalysis. 2004; 16(1-2): 19-44

Welch CM, Compton RG. Theuse of nanoparticles in electroanalysis: a review. Anal Bioanal Chem. 2006; 384(3): 601–619

Zima J, Švancara I, Barek J, Vytras K. Recent advances in electroanalysis of organic and biological compounds at carbon paste electrodes. Crit Rev Anal Chem. 2009; 39: 204-227

Kalcher K, Švancara I, Buzuk M, Vytras K, Walcarius A. Electrochemical sensors and biosensors based on heterogeneous carbon materials. MonatshChem. 2009; 140: 861-889

Švancara I, Konvalina J, Schachl K, Kalcher K, Vytras K. Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode. Electroanalysis. 1998; 10: 435-441;2-J

Bai J, Zhou B. Titanium Dioxide Nanomaterials for SensorApplications. Chem Rev. 2014; 114(19): 10131-10176

Xiaobo Chen, Samuel S Mao. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem Rev. 2007; 107: 2891-2959

Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020; 10(2): 387

Mo SD, Ching WY. Electrical and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys Rev B. 1995; 51(19): 13023-13032

Ansari SA, Khan MM, Ansari MO, Cho MH. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem. 2016; 40(4): 3000-3009

Babaei A, Moradi M , Sohrabi M, Feshki S, Marandi M. Fabrication of TiO2 Hollow Spheres and its Application in Modification of Carbon Paste Electrode For Simultaneous Determination of Dopamine and Piroxicam in the Presence of Ascorbic acid. J Nanostruct. 2018; 8(1):119-130.

Ha TJ, Hong MH, Park CS, Park HH. Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking. Sens Actuator B Chem. 2013; 181: 874-879

Fadillah G, Ariani F. A novel electrochemical synthesis of TiO2 nanoparticles and its application as bisphenol-B sensor. AIP Conference Proceedings 2021; 2370, 050001

Zarei E, Jamali MR, Bagheri J. Applicationof TiO2 Nanoparticles Modified Carbon Paste Electrode for the Determination of Vitamin B2. J Anal Chem. 2019; 74: 1213–1222

Narouei FH, Kirk KA, Andreescu S. Electrochemical Quantification of Lead Adsorption on TiO2 Nanoparticles. Electroanalysis. 2020; 33(1): 188-196

Sarma M, Valle M. Improved Sensing of Capsaicin with TiO2 Nanoparticle Modified Epoxy Graphite Electrode. Electroanalysis. 2020; 32(2): 230-237

OliveiraLuciana S, Alba Juan FG, SilvaValdinete L, RibeiroRogério T, FalcãoEduardo HL, Navarro M. The effect of surface functional groups on the performance of Graphite powders used as electrodes. J Electroanalytical Chem. 2018; 818: 106-113

Mikysek T, Stočes M, Švancara I, Ludvík J. Relation between the composition and properties of carbon nanotubes paste electrodes (CNTPEs). In: Vytřas K, Kalcher K, Švancara I. Sensing in Electroanalysis, Pardubice, Czech: University of Pardubice; 2010: 69-75

Mikysek T, Stočes M, Švancara I, Ludvík J. The ohmic resistance effect for characterisation of carbon nanotube paste electrodes (CNTPEs). RSC Adv. 2012; 2: 3684-3690

Rabie Malha SI, Lahcen AA, Arduini F, Ourari A, Amine A. Electrochemical Characterization of Carbon Solid_like Paste Electrode Assembled Using Different Carbon Nanoparticles. Electroanalysis. 2015; 27: 1-9

Ashrafi AM, Richtera L. Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples. Molecules. 2019; 24: 2215

Čović JS, Zarubica AR, Bojić AL, Troter TM, Ranđelović MS. Electrochemical study of novel composite electrodes based on glassy carbon bulk-modified with Pt and MoO2 nanoparticles supported onto multi-walled carbon nanotubes. J Serb Chem Soc. 2020; 85(9): 1185-1196

Andi Wang D, Chung DL. Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbons. 2014; 72: 135-151

Khodari M, Mersal GAM, Rabie EM, Assaf HF. Electrochemical Sensor based on Carbon Paste Electrode Modified by TiO2 nano-paricles for the Voltammetric Determination of Resorcinol. Int J Electrochem Sci. 2018; 13: 3460-3474

Lobón GS, Yepez A, Garcia LF, Morais RL, Vaz BG, Carvalho VV, Rodrigues de Oliveira GA, Luque R, Gil E. Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes. Sci Rep. 2017; 7: 41326

Khursheed A, Akbar M, Richa R, Shaikh MM. Construction of TiO2 nanosheets modified glassy carbon electrode (GCE/TiO2) for the detection of hydrazine. Mater Res Express. 2016; 3: 074005

Mashhadizadeh MH, Rasouli F. Design of a New Carbon Paste Electrode Modified with TiO2 Nanoparticles to Use in an Electrochemical Study of Codeine and Simultaneous Determination of Codeine and Acetaminophen in Human Plasma Serum Samples. Electroanalysis. 2014; 26: 2033–2042

Mashhadizadeh MH, Afshar E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochimica Acta. 2013; 87: 816-823

Švancara I, Schachl. Testing of unmodified carbon paste electrodes. Chem Listy. 1999; 93: 490-499

Mikysek T, Švancara I, Kalcher K, Bartoš M, Vytras K, Ludvík J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Anal Chem. 2009; 81(15): 6327-6333

Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH. Anatase and rutil in evonik aeroxide P25: Heterojunctioned or individual nanoparticles. Catalysis Today. 2017; 300: 12-17

d Kiran Kumar RS, Mamatha GP, Muralidhara HB, Kumar KY, Prashanth MK, Electrochemical Studies of Dopamine Using Titanium Dioxide Nanoparticle Modified Carbon Paste Electrode, Anal Bioanal Electrochem. 2015; 7(2): 175-185,7(2)175-185.pdf

Piljac I. Senzori fizikalnih veličina i elektroanalitičke metode. Zagreb, Hrvatska: Mediaprint-Tiskara Hrastić d.o.o.; 2010 ISBN 978-953-95404-1-6

Hassaninejad-Darzi SK, Shajie F. A Sensitive Voltammetric Determination of Anti-Parkinson Drug Pramipexole Using Titanium Dioxide Nanoparticles Modified Carbon Paste Electrode. J Braz Chem Soc. 2016; 28(4): 529-539

Tashkhourian J, Nami Ana SF, Hashemnia S, Hormozi-Nezhad MR. Construction of modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid. J Solid State Electrochem. 2013; 17: 157–165

Garcia LF, Cunha CEPd, Moreno EKG, Thomaz DV, Sanz Lobón G, Luque R, Somerset V, De Souza Gil E. Nanostructured TiO2 Carbon Paste Based Sensor for Determination of Methyldopa. Pharmaceuticals. 2018; 11(4):99.

Radoman T, Džunuzović J, Jeremić K, Marinković A, Spasojević P, Popović I, Džunuzović E. Uticaj veličine nanočestica TIO2 i njihove površinske modifikacije na reološka svojstva alkidne smole. Hem Ind. 2013; 67(6): 923-932

Manjunatha KG, Kumara Swamy BE, Madhuchandra HD, Vishnumurthy KA. Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline. Chem Data Collec. 2021; 31: 100604

Tashkhourian J, Nami Ana SF, Hashemnia S, Hormozi-Nezhad MR. Construction of modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid. J Solid State Electrochem. 2013; 17: 157–165

Akhond M, Absalan G, Tafakori A, Ershadifar H. Simultaneous Determination of Thiocyanateand Oxalate in Urine using a Carbon Ionic Liquid Electrode Modified with TiO2-Fe Nanoparticles. Anal Bioanal Chem. 2016; 3(1): 73-86

Ardakani MM, Beitollahi H, Taleat Z, Niasari MS. Fabrication and characterization of molybdenum(VI) complex–TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine. J Serb Chem Soc. 2011; 76(4): 575–589

Merck KGaA, Darmstadt, Germany,MDA_CHEM-104206 pristupljeno 11. 05. 2021.

Merck KGaA, Darmstadt, Germany,MDA_CHEM-107160 pristupljeno 11. 05. 2021.

Merck KGaA, Darmstadt, Germany,MDA_CHEM-814811 Pristupljeno 11. 05. 2021.

Xiongzhen Jiang, Maykel Manawan, Ting Feng, Ruifeng Qian, Ting Zhao, Guanda Zhou, Fantai Kong , Qing Wang, Songyuan Dai, Jia HongPan. Anatase and rutil in evonik aeroxide P25:Heterojunctioned or individual nanoparticles. Catalysis Today. 2017; 300: 12-17