Sound based assembly of spatially organized porous constructs Abstract
Main Article Content
Abstract
An emerging contactless method for creating biologically relevant constructs is acoustic bioassembly. This method induces the assembly of particulate systems through fluid patterns (e.g., pressure fields, surface instabilities, waves). These fluid patterns produce hydrodynamic forces that are spatially specific and control the arrangement of micron-sized particles. The frequency and amplitude of the chamber vibrations directly regulate these forces. We decided to exploit this novel technique in combination with cell-laden gelatine beads. We then patterned the beads to generate spatially orchestrated porous constructs where cells can easily invade and proliferate.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
References
Guex, A. G., Di Marzio, N., Eglin, D., Alini, M., & Serra, T. (2021). The waves that make the pattern: a review on acoustic manipulation in biomedical research. Materials Today Bio, 10, 100110.
Neffe, A. T., Cruz, D. M. G., Roch, T., & Lendlein, A. (2021). Microparticles from glycidylmethacrylated gelatin as cell carriers prepared in an aqueous two-phase system. European Polymer Journal, 142, 110148.