Propustljivost vodene pare najlon ženskih hulahop čarapa Original scientific paper

Glavni sadržaj članka

Elena Tomovska
https://orcid.org/0000-0001-5714-2155
Lubod Hes
https://orcid.org/0000-0002-0734-8603
Koleta Zafirova
https://orcid.org/0000-0002-0429-3977

Apstrakt

Svojstva komfora odeće, kao što su sposobnost prenosa toplote, vazduha i vodene pare, predstavljaju neke od glavnih indikatora njenog kvaliteta, te su stoga bila predmet većeg broja istraživanja poslednjih decenija. U okviru ovog istraživanja ispitivana je propustljivost vodene pare ženskih najlon hulahop čarapa, u njihovom relaksiranom stanju, kao i prilikom istezanja pletenine od 100 % (što odgovara uslovima nošenja) i više (121 i 144 %). Za merenje propustljivosti vodene pare korišćena je aparatura “Permetest” prema standardu ISO 11092. Rezultati pokazuju da kod vrlo finih pletenina (izrađenih od tankih filamenata) nema promena u propustljivosti vodene pare prilikom njihovog istezanja, dok kod pletenina izradjenih od filamenta finoće iznad 44 dtex propustljivost vodene pare raste proporcionalno sa istezanjem.

Downloads

Download data is not yet available.

Detalji članka

Kako citirati
Tomovska, E., Hes, L., & Zafirova, K. . (2023). Propustljivost vodene pare najlon ženskih hulahop čarapa: Original scientific paper. HEMIJSKA INDUSTRIJA : : ХЕМИЈСКА ИНДУСТРИЈА, 77(3), 203–210. https://doi.org/10.2298/HEMIND230103019T
Broj časopisa
Sekcija
Transport properties and permeability of textile materials

Funding data

Reference

Sweeney MM, Branson DH. Sensorial Comfort. Part I: A Psychophysical Method for Assessing Moisture Sensation in Clothing. Text Res J. 1990; 60(7): 371-377. https://doi.org/10.1177/004051759006000701 .

Hes L, de Araujo M. Simulation of the Effect of Air Gaps between the Skin and a Wet Fabric on Resulting Cooling Flow. Text Res J. 2010; 80(14): 1488–1497. https://doi.org/10.1177/0040517510361797.

Bertaux E, Derler S, Rossi R M, Xianyi Z, Koehl L, Ventenat V. Textile, Physiological, and Sensorial Parameters in Sock Comfort. Text Res J. 2010; 80(17): 1803–1810. https://doi.org/10.1177/0040517510369409.

Das B, Das A, Kothari VK, Fanguiero R, de Araújo M. Moisture Transmission Through Textiles Part I: Processes involved in moisture transmission and the factors at play. Autex Res J. 2007; 7(2): 100-110. http://www.autexrj.org/No3-2007/0236.pdf.

Das B, Das A, Kothari VK, Fanguiero R, de Araújo M. Moisture Transmission Through Textiles Part II: Evaluation Methods and Mathematical Modellin. Autex Res. J. 2007; 7(3): 194-216. http://www.autexrj.org/No3-2007/0236.pdf.

Parsons KC.Human thermal environments, Taylor & Francis Publishers, United Kingdom, 1993 https://doi.org/10.1201/b16750.

Sampath MB, Senthilkumar M, Nalankilli G. Effect of filament fineness on comfort characteristics of moisture management finished polyester knitted fabrics. J Ind Tex., 2011; 41(2): 160–173. https://doi.org/10.1177/1528083711400774.

Gericke A, Van der Pol J. A comparative study of regenerated bamboo, cotton and viscose rayon fabrics. Part 1: selected comfort properties. J Fam Ecol Cons Sci. 2010; 38: 63–73. https://www.ajol.info/index.php/jfecs/article/view/61642.

Amber RRV, Wilson CA, Laing RM, Lowe BJ, Niven BE. Thermal and moisture transfer properties of sock fabrics differing in fiber type, yarn, and fabric structure. Text Res J. 2015; 85(12):1269 -1280. https://doi.org/10.1177/0040517514561926.

Bogusławska-Bączek M, Hes L. Effective Water Vapour Permeability of Wet Wool Fabric and Blended Fabrics. Fibres Text East Eur. 2013; 21(1): 67-71. http://www.fibtex.lodz.pl/article844.html.

Ucar N, Yilmaz T. Thermal properties of 1_1, 2_2,3_3 rib knit fabrics. Fibres Text East Eur. 2004; 12(3): 34–38. http://www.fibtex.lodz.pl/archive.htm.

Erdumlu N, Saricam C. Investigating the effect of some fabric parameters on the thermal comfort properties of flat knitted acrylic fabrics for winter wear. Text Res J. 2017; 87(11): 1349–1359. https://doi.org/10.1177/0040517516652347.

Mansoor T, Hes L, Skenderi Z, Siddique H, Hussain H, Javed A. Effect of preheat setting process on heat, mass and air transfer in plain socks. J Text Ins. 2019; 110(2): 159-170. https://doi.org/10.1080/00405000.2018.1523990.

] Mansoor T, Hes L, Bajzik V, Noman M T. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Text Res J. 2020; 90(17-18): 1987-2006. https://doi.org/10.1177/0040517520902540.

Loginov U, Grishanov SA, Harwood RJ. Modelling the Load–Extension Behaviour of Plain-knitted Fabric: Part I: A Unit-cell Approach towards Knitted-fabric Mechanics. J Text Ins. 2002; 93(3): 218-238. https://doi.org/10.1080/00405000208630566.

Popper P. The Theoretical Behavior of a Knitted Fabric Subjected to Biaxial Stresses. Text Res J. 1966; 36(2): 148 https://doi.org/10.1177/004051756603600208.

Karimi HR, Jeddi AAA, Rastgoo A. Theoretical analysis of load–extension behaviour of plain-weft-knitted fabric, J Text Ins. 2009; 100(1): 18-27. https://doi.org/10.1080/00405000701692544.

Shanahan W J, Postle R. Jamming of Knitted Structures. Text Res J. 1973; 43(9): 532–538. https://doi.org/10.1177/004051757304300907.

Ziaei M, Ghane M, Hasani H, Saboonchi A. Simulation of Temperature Distribution Within Weft-Knitted Fabrics in Extended State. Cloth Tex Res J. 2019; 37(4): 297-312. https://doi.org/10.1177/0887302X19856112.

Khalil A, Fouda A, Těšinová P, Eldeeb AS. Comprehensive Assessment of the Properties of Cotton Single Jersey Knitted Fabrics Produced from Different Lycra States. Autex Res J. 2021; 21(1): 71-78. https://doi.org/10.2478/aut-2020-0020.

Tomovska E, Hes L. Thermophysiological Comfort Properties of Polyamide Pantyhose. Fibres Text East Eur. 2019; 27(5): 53-58. https://doi.org/10.5604/01.3001.0013.2902.