Barbotažna kolona sa istostrujnim tokom faza u transferzalnom magnetnom polju Naučni rad

Glavni sadržaj članka

Jordan Y. Hristov
https://orcid.org/0000-0002-7957-8192
Radojica D. Pešić
https://orcid.org/0000-0002-5547-7450

Apstrakt

U radu je dat prikaz eksperimentalnih rezultata dobijenih u barbotažnoj koloni sa magnetnom čvrstom fazom smeštenom na dnu kolone, kao raspodeljivačem dvofaznog toka gas-tečnost, pod dejstvom poprečnog magnetnog polja. Najpre je obezbeđen protok tečnosti kroz pakovani sloj čestica, zatim je takav sloj podvrgnut dejstvu magnetnog polja, a na kraju je uspostavljen protok gasa kroz sloj, koji je obezbedio uspostavljanje fluidizovanog sloja čestica. Eksperimenti su izvedeni pri intenzitetima polja do 45 kA m-1, površinskim brzinama tečnosti do 20 mm s-1 i protocima gasa do 8 m3 h-1. Korišćene su frakcije čestica dva različita opsega prečnika, do 1 mm. Fokus je bio na ekspanziji trofaznog sloja magnetnih čestica, koji igra ulogu distributora gasa, kao i na zapreminskom udelu gasa u dvofaznoj sekciji kolone koja se nalazi iznad trofaznog sloja, a takođe i na drugim odgovarajućim parametrima sistema. Izvršena piezometarska merenja su pokazala da je na osnovu njih moguće odrediti poziciju granice između dve sekcije u koloni bez vizuelne detekcije te pozicije, kao i određivanje sadržaja gasa u dvofaznoj sekciji kolone. Na ekspanziju sloja snažno je uticalo stanje sloja stvoreno inicijalno uspostavljenim protokom tečnosti. Rezultati su pokazali da intenzitet polja primenjenog na magnetne čestice omogućava kontrolu kako ekspanzije sloja tako i unutrašnje strukture sloja, na osnovu kojih se prepoznaje potencijalna primenljivost magnetno stabilisanog trofaznog sloja kao distributora gasa u barbotažnoj koloni.

Detalji članka

Broj časopisa

Rubrika

Višefazni sistemi u hemijskom inženjerstvu

Kako citirati

[1]
J. Y. . Hristov and R. D. Pešić, “Barbotažna kolona sa istostrujnim tokom faza u transferzalnom magnetnom polju : Naučni rad”, Hem Ind, vol. 78, no. 3, pp. 161–172, Oct. 2024, doi: 10.2298/HEMIND230621010H.

Reference

Hristov JY. Magnetic field assisted fluidization-A unified approach. Part 1. Fundamentals and relevant hydrodynamics. Rev Chem Eng. 2002; 18: 295-509. https://doi.org/10.1515/REVCE.2002.18.4-5.295

Hristov JY. Magnetic field assisted fluidization-A unified approach. Part5. A Hydrodynamic Treatise on Liquid-solid fluidized beds. Rev Chem Eng. 2006; 22: 195-375. https://doi.org/10.1515/REVCE.2006.22.4-5.195

Sajc L, Jovanovic Z, Vunjak-Novakovic G, Jovanovic G, Pesic R, Vucovic D. Liquid dispersions in a magnetically stabilized fluidized bed (MSFB). Trans Ichem E. 1994; 72: 236-240.

Sajc L, Pesic R, Bursac P, Vunjak-Novakovic G, Bugarski B, Vukovic D. Liquid dispersion in a magnetically stabilized two and three-phase fluidized bed bioreactors. In: Fluidization VIII: Proceedings of the Eighth Engineering Foundation Conference on Fluidization. Tours, France, 1995, pp. 425-432.

Sajc L, Jovanovic G, Jovanovic, Z, Bugarski B. Liquid dispersions in a magnetically stabilized fluidized bed (MSFB). In: Cheremisinoff NP. ed. Encyclopedia of Fluid Mechanics, Houston, TX: Gulf Publishing Company.1996, pp. 713-740.

Hristov JY, Hadzisavas K. Gas-liquid-magnetic solid beds: A classification of the operating modes and a hydrodynamic study in a transverse magnetic field. In: Proceedings of 2nd European Conference on Fluidization. Bilbao, Spain, 1997, pp. 565-572.

Hristov JY. Magnetic field assisted fluidization - A unified approach. Part 6. Topics of Gas-Liquid-solid Fluidized bed Hydrodynamics. Rev Chem Eng. 2007; 23: 373-526. https://doi.org/10.1515/REVCE.2007.23.6.373

Hristov JY. Magnetic field assisted fluidization - A unified approach. Part 7. Mass Transfer: Chemical reactors, basic studies and practical implementations thereof. Rev Chem Eng. 2009; 25: 1-254. https://doi.org/10.1515/REVCE.2009.25.1-2-3.1

Hristov JY. Magnetic field assisted fluidization - a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses. Rev Chem Eng. 2010; 26: 55-128. https://doi.org/10.1515/REVCE.2010

Zhu Q, Huang Q, Yang C. Hydrodynamic review on liquid–solid magnetized fluidized bed. Rev Chem Eng. 2020; 37: 827-861. https://doi.org/10.1515/revce-2019-0033

Zhu Q, Li H, Zhu Q, Li J, Zou Z. Hydrodynamic study on magnetized fluidized beds with Geldart-B magnetizable particles. Pow Tech. 2014; 277: 269-285. https://doi.org/10.1016/j.powtec.2014.08.019

Zhu Q, Hao W, Liang P. Magnetic intensification of mass transfer between fluidizing gas and Geldart-B nonmagnetizable particles: Property effects of added magnetizable particles. Chem Eng Res Des. 2021; 175: 25-36. https://doi.org/10.1016/j.cherd.2021.08.034

Tschöpe A, Franzreb M. Influence of non-conducting suspended solids onto the efficiency of electrochemical reactors using fluidized bed electrodes. Chem Eng J. 2022; 424: 130322. https://doi.org/10.1016/j.cej.2021.130322

Klaiber M, Tschöpe A, Cu K, Waibel I, Heißler S, Franzreb M, Joerg Lahann J. Multifunctional Core–Shell Particle Electrodes for Application in Fluidized Bed Reactors. ACS Appl Eng Mater. 2023; 1: 325–333. https://doi.org/10.1021/acsaenm.2c00072

Rakoczy R, Kordas M, Markowska-Szczupak A, Konopacki M, Augustyniak A, Jabłońska J, Paszkiewicz O, Dubrowska K, Story G, Story A, Zietarska K, Sołoducha D, Borowski T, Roszak M, Grygorcewicz B, Dołegowska B. Studies of a mixing process induced by a rotating magnetic field with the application of magnetic particles. Chem Proc Eng. 2021; 42: 157–172. https://doi.org/10.24425/cpe.2021.138922

Grygorcewicz B, Rakoczy R, Roszak M, Konopacki M, Kordas M, Piegat A, Serwin N, Cecerska-Hery´c E, El Fray M, Dołegowska B. Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface. Curr Iss Mol Biol. 2022; 44: 1316–1325. https://doi.org/10.3390/cimb4403008

Hristov JY. External Loop Airlift with Magnetically Controlled Liquid Circulation. Pow Tech. 2005; 149: 180-194. https://doi.org/10.1016/j.powtec.2004.11.005

Similar Articles

You may also start an advanced similarity search for this article.