Електрохемијски суперкондензатори: Принцип рада, компоненте и активни материјали

Main Article Content

Александар Б. Декански
http://orcid.org/0000-0003-3122-8342
Владимир В. Панић

Abstract

Кроз преглед принципа рада уређаја за динамичко складиштење енергије и њихове најновије генерације, електрохемијских суперкондензатора, као и компоненти и активних материјала који се користе за њихову израду и опис различитих приступа изради, изложено је тренутно стање у развоју истраживања суперкондензатора као важног сегмента склопова за алтернативно напајање електричном енергијом. Дискутоване су њихове предности и недостаци у односу на друге врсте електро­хемијских извора струје, пре свега батерија.

Downloads

Download data is not yet available.

Article Details

How to Cite
Декански, А. Б., & Панић, В. В. (2018). Електрохемијски суперкондензатори: Принцип рада, компоненте и активни материјали. HEMIJSKA INDUSTRIJA (Chemical Industry), 72(4), 229–251. https://doi.org/10.2298/HEMIND180515016D
Section
Engineering of Materials - Composites

References

González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: Technologies and materials. Renew Sust Energ Rev. 2016; 58: 1189-1206.

Miller JR, Simon P. Materials science. Electrochemical capacitors for energy management. Science. 2008; 321(5889): 651-2.

Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources. 2006; 157(1): 11-27.

Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta. 2000; 45(15-16): 2483-2498.

Bagot︠s︡kiĭ VS Fundamentals of Electrochemistry. Wiley-Interscience; 2006.

Endo M, Takeda T, Kim Y, Koshiba K, Ishii K. High power electric double layer capacitor (EDLCs); from operating principle to pore size control in advanced activated carbons. Carbon Lett. 2001; 1.

Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 2009; 38(9): 2520.

Barbieri O, Hahn M, Herzog A, Kötz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon N Y. 2005; 43(6): 1303-1310.

Gamby J, Taberna P., Simon P, Fauvarque J., Chesneau M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources. 2001; 101(1): 109-116.

Qu D. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources. 2002; 109(2): 403-411.

Shi H. Activated carbons and double layer capacitance. Electrochim Acta. 1996; 41(10): 1633-1639.

Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science (80- ). 2006; 313(5794): 1760-1763.

Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon N Y. 2005; 43(6): 1293-1302.

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014; 7(5): 1597.

Naoi K, Simon P. New Materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface . 2008; 17(1): 34-37.

Conway BE, Pell WG. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem. 2003; 7(9): 637-644.

Wang D-W, Li F, Wu Z-S, Ren W, Cheng H-M. Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. Electrochem Commun. 2009; 11(9): 1729-1732.

Chuang C-M, Huang C-W, Teng H, Ting J-M. Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors. Energ Fuel. 2010; 24(12): 6476-6482.

Zhu Z, Wang G, Sun M, Li X, Li C. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim Acta. 2011; 56(3): 1366-1372.

Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012; 41(2): 797-828.

Pell W., Conway B. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. J Electroanal Chem. 2001; 500(1-2): 121-133.

Galiński M, Lewandowski A, Stępniak I. Ionic liquids as electrolytes. Electrochim Acta. 2006; 51(26): 5567-5580.

Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009; 8(8): 621-629.

Liu H, Liu Y, Li J. Ionic liquids in surface electrochemistry. Phys Chem Chem Phys. 2010; 12(8): 1685.

Sivakkumar SR, Pandolfo AG. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta. 2012; 65: 280-287.

Wei L, Yushin G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy. 2012; 1(4): 552-565.

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008; 7(11): 845-854.

Simon P, Burke A. Nanostructured carbons: Double-layer capacitance and more. Electrochem Soc Interface. 2008; 71(1): 28-44.

Boota M, Hatzell KB, Beidaghi M, Dennison CR, Kumbur EC, Gogotsi Y. Activated carbon spheres as a flowable electrode in electrochemical flow capacitors. J Electrochem Soc. 2014; 161(6): A1078-A1083.

Panić V, Dekanski A. Kompozitni materijal hidratisani rutenijum oksid/ugljenik kao elektrohemijski superkondenzator 2. Kapacitivne osobine ugljeničnog substrata. Hem Ind. 2007; 61(5a): 288-294.

Fernández JA, Morishita T, Toyoda M, Inagaki M, Stoeckli F, Centeno TA. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J Power Sources. 2008; 175(1): 675-679.

Jurewicz K, Vix-Guterl C, Frackowiak E, Saadallaha S, Redaac M, Parmentierc J,Patarinc J,.Béguind F. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids. 2004; 65(2-3): 287-293.

Thambidurai A, Lourdusamy JK, John JV, Ganesan S. Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors — a comparative investigation. Korean J Chem Eng. 2014; 31(2): 268-275.

Jiang J, Zhang L, Wang X, Holm Н, Rajagopalan K, Fanglin C, Shuguo M. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta. 2013; 113: 481-489.

Du X, Zhao W, Wang Y, Wang C, Chen M, Qi T, Hua C, Ma M. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresour Technol. 2013; 149: 31-37.

Ersoy DA, McNallan MJ, Gogotsi Y. Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mater Res Innov. 2001; 5(2): 55-62.

Gogotsi YG, Jeon I-D, McNallan MJ. Carbon coatings on silicon carbide by reaction with chlorine-containing gases. J Mater Chem. 1997; 7(9): 1841-1848.

Cambaz ZG, Yushin GN, Gogotsi Y, Vyshnyakova KL, Pereselentseva LN. Formation of carbide-derived carbon on beta-silicon carbide whiskers. J Am Ceram Soc. 2006; 89(2): 509-514.

Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW. Nanoporous carbide-derived carbon with tunable pore size. Nat Mater. 2003; 2(9): 591-594.

Yushin G, Nikitin A, Gogotsi Y. Carbide-derived carbon. In: Gogotsi Y, ed. Nanomaterials Handbook. CRC/Taylor & Francis; 2006: 237-280.

Dash R, Chmiola J, Yushin G, Gogotsi Y, Laudisio G, Singer J, Fischer J, Kucheyev S. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon N Y. 2006; 44(12): 2489-2497.

Kravchik AE, Kukushkina JA, Sokolov VV, Tereshchenko GF. Structure of nanoporous carbon produced from boron carbide. Carbon N Y. 2006; 44(15): 3263-3268.

Erdemir A, Kovalchenko A, McNallan MJ, Welz S, Lee A, Gogotsi Y, Carroll B. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films. Surf Coatings Technol. 2004; 188-189: 588-593.

Permann L, Lätt M, Leis J, Arulepp M. Electrical double layer characteristics of nanoporous carbon derived from titanium carbide. Electrochim Acta. 2006; 51(7): 1274-1281.

Chmiola J, Yushin G, Dash R, Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources. 2006; 158(1): 765-772.

Taberna PL, Simon P, Fauvarque JF. Electrochemical Characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc. 2003; 150(3): A292.

Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A. 2007; 104(34): 13574-7.

Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM. Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol. 2006; 1(2): 112-116.

Chen J., Li W., Wang D., Yang S., Wen J., Ren Z. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon N Y. 2002; 40(8): 1193-1197.

Emmenegger C, Mauron P, Züttel A, Nützenadel Ch, Schneuwly A, Gallay R, Schlapbach L. Carbon nanotube synthesized on metallic substrates. Appl Surf Sci. 2000; 162-163: 452-456.

Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Béguin F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett. 2002; 361(1-2): 35-41.

Al-Asadi AS, Henley LA, Wasala M, Muchharla B, Perea-Lopez N, Carozo V. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications. J Appl Phys. 2017; 121(12): 124303.

Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett. 2000; 77(15): 2421.

Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon N Y. 2001; 39(6): 937-950.

McNally T, Pötschke P. Polymer-carbon nanotube composites: Preparation, properties and applications. Woodhead Pub; 2011.

Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Béguin F. Nanotubular materials as electrodes for supercapacitors. Fuel Process Technol. 2002; 77-78: 213-219.

Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater. 2002; 14(4): 1610-1613.

Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH. Electrochemical Capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater. 2002; 14(5): 382.

Arabale G, Wagh D, Kulkarni M, Singh C, Chen GZ, Fray DJ, Windle AH. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett. 2003; 376(1-2): 207-213.

Xia J, Chen F, Li J, Tao N. Measurement of the quantum capacitance of graphene. Nat Nanotechnol. 2009; 4(8): 505-509.

Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008; 8(10): 3498-3502.

Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR. Graphene-based electrochemical supercapacitors. J Chem Sci. 2008; 120(1): 9-13.

Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y, Supercapacitor devices based on graphene materials. J Phys Chem C. 2009; 113(30): 13103-13107.

Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012; 1(1): 107-131.

Li N, Tang S, Dai Y, Meng X. The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. J Mater Sci. 2014; 49(7): 2802-2809.

He Y-S, Bai D-W, Yang X, Chen J, Liao X-Z, Ma Z-F. A Co(OH)2−graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun. 2010; 12(4): 570-573.

Wang H, Casalongue HS, Liang Y, Dai H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc. 2010; 132(21): 7472-7477.

Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009; 3(7): 1745-1752.

Xu J, Wang K, Zu S-Z, Han B-H, Wei Z. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 2010; 4(9): 5019-5026.

Lee JK, Smith KB, Hayner CM, Kung HH. Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun. 2010; 46(12): 2025.

Jeong H-K, Jin M, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee Y. Heenhanced Electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. ACS Nano. 2010; 4(2): 1162-1166.

Song Y, Xu J-L, Liu X-X. Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J Power Sources. 2014; 249: 48-58.

Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z, Yang Z, Liu Z-H. RuO2/graphene hybrid material for high performance electrochemical capacitor. J Power Sources. 2014; 248: 407-415.

Cai Y, Wang Y, Deng S, Chen G, Li Q, Han B, Han R, Wang Y. Graphene nanosheets-tungsten oxides composite for supercapacitor electrode. Ceram Int. 2014; 40(3): 4109-4116.

Wang D, Min Y, Yu Y, Peng B. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J Colloid Interface Sci. 2014; 417: 270-277.

Gopalakrishnan K, Govindaraj A, Rao CNR. Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A. 2013; 1(26): 7563.

Yang J, Li G, Cai M, Pan P, Li Z, Bao Y, Chen Z. A facile self-templating synthesis of carbon frameworks with tailored hierarchical porosity for enhanced energy storage performance. Chem Commun. 2017; 53(36): 5028-5031.

Wu J, Liu J, Li L, Wang X. A bottom-up, template-free route to mesoporous N-doped carbons for efficient oxygen electroreduction. J Mater Sci. 2017; 52(16): 9794-9805.

Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chemie Int Ed. 2008; 47(20): 3696-3717.

Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP, Naskar AK. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir. 2014; 30(3): 900-910.

Kumagai S, Sato M, Tashima D. Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochim Acta. 2013; 114: 617-626.

Panić V V., Dekanski AB. Carbon-supported hydrous ruthenium oxide composite as electrochemical supercapacitors, 3. Capacitive Properties of the composites,. Hem Ind. 2007; 61(5a): 295-305.

Ramani M, Haran BS, White RE, Popov BN. Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J Electrochem Soc. 2001; 148(4): A374.

Sopcic S, Kraljic Rokovic M, Mandic Z. Preparation and characterization of RuO2/polyaniline/polymer binder composite electrodes for supercapacitor application. J Electrochem Sci Eng. 2012; 2(1): 41-52.

Sopčić S, Roković MK, Mandić Z, Inzelt G. Preparation and characterization of RuO2/polyaniline composite electrodes. J Solid State Electrochem. 2010; 14(11): 2021-2026.

Jow TR. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide. J Electrochem Soc. 1998; 145(1): 49.

Panić VV, Vidaković TR, Dekanski AB, Mišković-Stanković VB, Nikolić BŽ. Capacitive properties of RuO2-coated titanium electrodes prepared by the alkoxide ink procedure. J Electroanal Chem. 2007; 609(2): 120-128.

Panić V V., Dekanski AB, Mišković-Stanković VB, Nikolić BŽ. The study of capacitance change during electrolyte penetration through carbon-supported hydrous ruthenium oxide prepared by the sol-gel Procedure. Chem Biochem Eng Q. 2009; 23(1): 23-30.

Patake VD, Lokhande CD, Joo OS. Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments. Appl Surf Sci. 2009; 255(7): 4192-4196.

Li Q, Zheng S, Xu Y, Xue H, Pang H. Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J. 2018; 333: 505-518.

Icaza JC, Guduru RK. Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. J Alloys Compd. 2018; 735: 735-740.

Ahn YR, Song MY, Jo SM, Park CR, Kim DY. Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology. 2006; 17(12): 2865-2869.

Sopčić S, Mandić Z, Kraljić Roković M. Some factors influencing power and energy capabilities of RuO2 supercapacitors. Acta Chim Slov. 2014; 61(2): 272-279.

Hu C-C, Huang Y-H, Chang K-H. Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium–iridium oxides for electrochemical supercapacitors. J Power Sources. 2002; 108(1-2): 117-127.

Jiang J, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim Acta. 2002; 47(15): 2381-2386.

Zhang LL, Wei T, Wang W, Zhao XS. Manganese oxide–carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater. 2009; 123(1): 260-267.

Ma S-B, Nam K-W, Yoon W-S, Yang X-Q, Ahn K-Y, Oh K-H, Kim K-B. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources. 2008; 178(1): 483-489.

Yan J, Wei T, Cheng J, Fan Z, Zhang M. Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Mater Res Bull. 2010; 45(2): 210-215.

Tang N, Tian X, Yang C, Pi Z. Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater Res Bull. 2009; 44(11): 2062-2067.

Patil UM, Salunkhe RR, Gurav KV, Lokhande CD. Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci. 2008; 255(5): 2603-2607.

Nelson PA, Owen JR. A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes. J Electrochem Soc. 2003; 150(10): A1313.

Shinde VR, Mahadik SB, Gujar TP, Lokhande CD. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci. 2006; 252(20): 7487-7492.

Kandalkar SG, Gunjakar JL, Lokhande CD. Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl Surf Sci. 2008; 254(17): 5540-5544.

Srinivasan V, Weidner JW. Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J Power Sources. 2002; 108(1): 15-20.

Jayalakshmi M, Rao MM, Venugopal N, Kim K-B. Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J Power Sources. 2007; 166: 578-583

Miura N, Oonishi S, Rajendra Prasad K. Indium tin oxide/carbon composite electrode material for electrochemical supercapacitors. Electrochem Soli St. 2004; 7(8): A247.

Sacer D, Kralj M, Sopcic S, Kosevic M, Dekanski A, Rokovic-Kraljic M. Supercapacitors based on graphene/pseudocapacitive materials. J Serbian Chem Soc. 2017; 82(4): 411-416.

Hu C-C, Huang C-M, Chang K-H. Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J Power Sources. 2008; 185(2): 1594-1597.

Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K. Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes. Solid State Ionics. 2002; 152: 833-841.

da Silva DL, Delatorre RG, Pattanaik G, Zangari G, Figueiredo W, Blum RP, Niehus H, Pasa AA. Electrochemical synthesis of vanadium oxide nanofibers. J Electrochem Soc. 2008; 155(1): E14.

Zhou X, Chen H, Shu D, He C, Nan J. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J Phys Chem Solids. 2009; 70(2): 495-500.

Lee HY, Goodenough JB. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J Solid State Chem. 1999; 148(1): 81-84.

Babakhani B, Ivey DG. Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J Power Sources. 2010; 195(7): 2110-2117.

Chi HZ, Zhu H, Gao L. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor. J Alloys Compd. 2015; 645: 199-205.

Chi HZ, Yin S, Cen D, Chen K, Hu Y, Qin H, Zhu H. The capacitive behaviours of MnO2/carbon fiber composite electrode prepared in the presence of sodium tetraborate. J Alloys Compd. 2016; 678: 42-50.

Yang Y, Liu T, Zhang L, Zhao S, Zeng W, Hussain S, Deng C, Pan H, Peng X. Facile synthesis of nickel doped walnut-like MnO2 nanoflowers and their application in supercapacitor. J Mater Sci Mater Electron. 2016; 27(6): 6202-6207.

Kim J-H, Lee KH, Overzet LJ, Lee GS. Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett. 2011; 11(7): 2611-2617.

Pettong T, Iamprasertkun P, Krittayavathananon A, Sukha P, Sirisinudomkit P, Seubsai, A. High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and n-doped reduced graphene oxide aerogel. ACS Appl Mater Interfaces. 2016; 8(49): 34045-34053.

Krittayavathananon A, Pettong T, Kidkhunthod P, Sawangphruk M. Insight into the charge storage mechanism and capacity retention fading of MnCo2O4 used as supercapacitor electrodes. Electrochim Acta. 2017; 258: 1008-1015.

Jia QX, Song SG, Wu XD, Cho JH, Foltyn SR, Findikoglu AT, Smith JL. Epitaxial growth of highly conductive RuO2 thin films on (100) Si. Appl Phys Lett. 1998; 68(8): 1069.

Sakiyama K, Onishi S, Ishihara K, Orita K, Kajiyama T, Hosoda N, Hara T. Deposition and properties of reactively sputtered ruthenium dioxide films. J Electrochem Soc. 1993; 140(3): 834.

Kim I-H, Kim K-B. Electrochemical Characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc. 2006; 153(2): A383.

Lee H, Cho MS, Kim IH, Nam J Do, Lee Y. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth Met. 2010; 160(9): 1055-1059.

Zheng JP, Cygan PJ, Jow TR. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc. 1995; 142(8): 2699.

Hu C-C, Lee C-H, Wen T-C. Oxygen evolution and hypochlorite production on Ru-Pt binary oxides. J Appl Electrochem. 1996; 26(1): 72-82.

Parker JF, Kamm GE, McGovern AD, DeSario PA, Rolison DR, Lytle JC, Long JW. Rewriting electron-transfer kinetics at pyrolytic carbon electrodes decorated with nanometric ruthenium oxide. Langmuir. 2017; 33(37): 9416-9425.

Fero S, Urgeghe C, De Battisti A. Heterogeneous electron-transfer rate constants for Fe(H2O)63+/2+ at metal oxide electrodes. J Phys Chem B,. 2004; 108(20): 6396-6401.

Wen T-C, Hu C. Hydrogen and oxygen evolutions on Ru-Ir binary oxides. J Electrochem Soc. 1992; 139(8): 2158.

Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York : Plenum Press; 1999.

Ardizzone S, Trasatti S. Interfacial properties of oxides with technological impact in electrochemistry. Adv Colloid Interface Sci. 1996; 64: 173-251.

Vuković M, Čukman D. Electrochemical quartz crystal microbalance study of electrodeposited ruthenium. J Electroanal Chem. 1999; 474(2): 167-173.

Zheng JP, Jow TR. High energy and high power density electrochemical capacitors. J Power Sources. 1996; 62(2): 155-159.

Wu N-L, Kuo S-L, Lee M-H. Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J Power Sources. 2002; 104(1): 62-65.

Su Y, Wu F, Bao L, Yang Z. RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor. New Carbon Mater. 2007; 22(1): 53-57.

Yu G-Y, Chen W-X, Zheng Y-F, Zhao J, Li X, Xu Z-D. Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes. Mater Lett. 2006; 60(20): 2453-2456.

Zheng Y-Z, Ding H-Y, Zhang M-L. Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors. Thin Solid Films. 2008; 516(21): 7381-7385.

Kim K-H, Kim KS, Kim G-P, Baeck S-H. Electrodeposition of mesoporous ruthenium oxide using an aqueous mixture of CTAB and SDS as a templating agent. Curr Appl Phys. 2012; 12(1): 36-39.

Kim Y-T, Tadai K, Mitani T. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J Mater Chem. 2005; 15(46): 4914.

Lee J-K, Pathan HM, Jung K-D, Joo O-S. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J Power Sources. 2006; 159(2): 1527-1531.

Yang KS, Kim CH, Kim B-H. Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores. Electrochim Acta. 2015; 174: 290-296.

Lin N, Tian J, Shan Z, Chen K, Liao W. Hydrothermal synthesis of hydrous ruthenium oxide/graphene sheets for high-performance supercapacitors. Electrochim Acta. 2013; 99: 219-224.

Hu C-C, Chen W-C, Chang K-H. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. J Electrochem Soc. 2004; 151(2): A281.

Panić V, Vidaković T, Gojković S, Dekanski A, Milonjić S, Nikolić B. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol. Electrochim Acta. 2003; 48(25-26): 3805-3813.

Šekularac G, Košević M, Dekanski A, Djokić V, Panjan M, Panić V. High energy/power supercapacitor performances of intrinsically ordered ruthenium oxide prepared through fast hydrothermal synthesis. ChemElectroChem. 2017; 4(10): 2535-2541.

Long JW, Swider KE Celia, Merzbacher I, Rolison DR. Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials. Langmuir, 1999:15(3): 780–785.

Sugimoto W, Yokoshima K, Murakami Y, Takasu Y. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta. 2006; 52(4): 1742-1748.

Foelske A, Barbieri O, Hahn M, Kötz R. An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors. Electrochem Solid-State Lett. 2006; 9(6): A268.

Wen J, Ruan X, Zhou Z. Preparation and electrochemical performance of novel ruthenium–manganese oxide electrode materials for electrochemical capacitors. J Phys Chem Solids. 2009; 70(5): 816-820.

Panić V, Dekanski A. Kompozitni materijal hidratisani rutenijum oksid/ugljenik kao elektrohemijski superkondenzator 1. Dobijanje, morfologija i karakterizacija kompozita. Hem Ind. 2007; 61(5a): 279-287.

Panić VV, Dekanski AB, Stevanović RM. Sol–gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues. J Power Sources. 2010; 195(13): 3969-3976.

Panić V V, Dekanski AB, Nikolić BŽ. Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites. J Serb Chem Soc. 2013; 78(546): 2141-216496.

McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR. Structure of hydrous ruthenium oxides: Implications for charge storage. J Phys Chem B. 1999; 103(23): 4825-4832.

Kim H, Popov BN. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J Power Sources. 2002; 104(1): 52-61.

Subramanian V, Hall SC, Smith PH, Rambabu B. Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics. 2004; 175(1-4): 511-515.

Wu N-L, Kuo S-L, Lee M-H. Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J Power Sources. 2002; 104(1): 62-65.

Yokoshima K, Shibutani T, Hirota M, Sugimoto W, Murakami Y, Takasu Y. Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1−xVxO2. J Power Sources. 2006; 160(2): 1480-1486.

Yuan C-Z, Gao B, Zhang X-G. Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J Power Sources. 2007; 173(1): 606-612.

Sugimoto W, Shibutani T, Murakami Y, Takasu Y. Charge storage capabilities of rutile-Type RuO2-VO2 solid solution for electrochemical supercapacitors. Electrochem Solid St. 2002; 5(7): A170.

Takasu Y, Nakamura T, Ohkawauchi H, Murakami Y. Dip-coated Ru-V Oxide electrodes for electrochemical capacitors. J Electrochem Soc. 1997; 144(8): 2601.

Yong-gang W, Xiao-gang Z. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochim Acta. 2004; 49(12): 1957-1962.

Pang S-C, Anderson MA, Chapman TW. Novel electrode materials for thin-film ultracapacitors: comparison of electro-chemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc. 2000; 147(2): 444.

Jabeen N, Xia Q, Savilov S V., Aldoshin SM, Yu Y, Xia H. Enhanced Pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl Mater Interfaces. 2016; 8(49): 33732-33740.

Hu C-C, Tsou T-W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun. 2002; 4(2): 105-109.

Gutierrez-Pardo A, Lacroix B, Martinez-Fernandez J, Ramirez-Rico J. Manganese dioxide supported on porous biomorphic carbons as hybrid materials for energy storage devices. ACS Appl Mater Interfaces. 2016; 8(45): 30890-30898.

Song Y, Liu T, Yao B, Li M, Kou T, Huang Z-H, Feng D-Y, Wang F, Tong Y, Liu X-X, Li Y. Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2017; 2(8): 1752-1759.

Mathieu Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater,. 2004; 16(16): 3184.

Liu Y-H, Yu T-C, Chen Y-W, Hou C-H. Incorporating manganese dioxide in carbon nanotube–chitosan as a pseudocapacitive composite electrode for high-performance desalination. ACS Sustain Chem Eng. January 2018: acssuschemeng.7b03313.

Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater,. 2002; 14(9): 3946.

Tran CCH, Santos-Peña J, Damas C. Theoretical and practical approach of soft template synthesis for the preparation of MnO2 supercapacitor electrode. J Phys Chem C. 2018; 122(1): 16-29.

Wu T, Wang G, Wang S, Zhao J, Zhou G, Li F, Cheng H-M. Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode. Environ Sci Technol Lett. January 2018: acs.estlett.7b00540.

Su X, Yu L, Cheng G, Zhang H, Sun M, Zhang X. High-performance α-MnO2 nanowire electrode for supercapacitors. Appl Energy. 2015; 153: 94-100.

Messaoudi B, Joiret S, Keddam M, Takenouti H. Anodic behaviour of manganese in alkaline medium. Electrochim Acta. 2001; 46(16): 2487-2498.

Raymundo-Piñero E, Khomenko V, Frackowiak E, Béguin F. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc. 2005; 152(1): A229.

Kim H, Popov BN. Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J Electrochem Soc. 2003; 150(3): D56.

Lee M-T, Chang J-K, Tsai W-T. Effects of iron addition on material characteristics and pseudo-capacitive behavior of mn-oxide electrodes. J Electrochem Soc. 2007; 154(9): A875.

Chang J-K, Huang C-H, Lee M-T, Tsai W-T, Deng M-J, Sun I-W. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. Electrochim Acta. 2009; 54(12): 3278-3284.

Chou S, Cheng F, Chen J. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources. 2006; 162(1): 727-734.

Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction. Electrochim Acta. 2008; 53(14): 4607-4614.

Zolfaghari A, Ataherian F, Ghaemi M, Gholami A. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim Acta. 2007; 52(8): 2806-2814.

Donne SW, Hollenkamp AF, Jones BC. Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. J Power Sources. 2010; 195(1): 367-373.

Kong S, Cheng K, Ouyang T, Ye K, Wang G, Cao D. Freestanding MnO2 nanoflakes on carbon nanotube covered nickel foam as a 3D binder-free supercapacitor electrode with high performance. J Electroanal Chem. 2017; 786: 35-42.

Li N, Zhu X, Zhang C, Lai L, Jiang R, Zhu J. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors. J Alloys Compd. 2017; 692: 26-33.

Ghasemi S, Hosseini SR, Boore-talari O. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor. Ultrason Sonochem. 2018; 40: 675-685.

Wei J, Nagarajan N, Zhitomirsky I. Manganese oxide films for electrochemical supercapacitors. J Mater Process Technol. 2007; 186(1-3): 356-361.

Nagarajan N, Cheong M, Zhitomirsky I. Electrochemical capacitance of MnOx films. Mater Chem Phys. 2007; 103(1): 47-53.

Hu C-C, Wang C-C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J Electrochem Soc. 2003; 150(8): A1079.

Shinomiya T, Gupta V, Miura N. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim Acta. 2006; 51(21): 4412-4419.

Liu F-J. Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor. J Power Sources. 2008; 182(1): 383-388.

Reddy RN, Reddy RG. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J Power Sources. 2004; 132(1-2): 315-320.

Rajendra Prasad K, Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem commun. 2004; 6(10): 1004-1008.

He C, Xiao Y, Dong H, Liu Y, Zheng M, Xiao K, Liu X, Zhang H, Lei B. Mosaic-structured SnO2@C Porous microspheres for high-performance supercapacitor electrode materials. Electrochim Acta. 2014; 142: 157-166.

Ping L, Bohejin T, Jiachang Z, Jicheng F, Jingli X. Ordered mesoporous carbon/SnO2 composites as the electrode material for supercapacitors. J Wuhan Univ Technol Sci Ed. 2011.

Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology. 2009; 20(45): 455602.

Manikandan K, Dhanuskodi S, Maheswari N, Muralidharan G. SnO2 nanoparticles for supercapacitor application. In: AIP Conference Proceedings. Vol 1731. AIP Publishing LLC; 2016: 050048.

Xu C-H, Chiu Y-F, Yeh P-W, Chen J-Z. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets. Mater Res Express. 2016; 3(8): 085002.

Wang W, Hao Q, Lei W, Xia X, Wang X. Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2012; 2(27): 10268.

Wang Y, Liu Y, Zhang J. Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors. J Nanoparticle Res. 2015; 17(10): 420.

Lim SP, Huang NM, Lim HN. Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram Int. 2013; 39(6): 6647-6655.

Chen M, Wang H, Li L, Zhang Z, Wang C, Liu Y, Wang W, Gao J. Novel and facile method, dynamic self-assemble, to prepare SnO2/rGO droplet aerogel with complex morphologies and their application in supercapacitors. ACS Appl Mater Interfaces. 2014; 6(16): 14327-14337.

Vijayakumar S, Nagamuthu S, Purushothaman KK, Dhanashankar M, Muralidharan G. Supercapacitor behavior of spray deposited SnO2 thin films. Int J Nanosci. 2011; 10(06): 1245-1248.

Sačer D, Kralj M, Sopčić S, Košević M, Dekanski, Aleksandar Kraljić Roković M. Microwave-assisted synthesis of graphene/SnO2 composite material and its supercapacitive properties. In: Hohol R, ed. 6th Regional Symposium on Electrochemistry - South-East Europe, Book of Abstracts,. Balatonkenese, Hungary; 2017: 125.

Chen K, Xue D. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode. J Colloid Interface Sci. 2014; 416: 172-176.

Mastragostino M, Arbizzani C, Soavi F. Polymer-based supercapacitors. J Power Sources. 2001; 97-98: 812-815.

Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors. J Power Sources. 2001; 100(1-2): 164-170.

Haushalter RC, Krause LJ. Electroless metallization of organic polymers using the polymer as a redox reagent: Reaction of polyimide with zintl anions. Thin Solid Films. 1983; 102(2): 161-171.

Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy. 2017; 36: 268-285.

Bello A, Barzegar F, Madito MJ, Momodu DY, Khaleed AA, Masikhwa TM, Dangbegnon JK, Manyala N. Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes. RSC Adv. 2016; 6(72): 68141-68149.

Xu J, Wang K, Zu S-Z, Han B-H, Wei Z. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 2010; 4(9): 5019-5026.

Zhou J, Zhao H, Mu X, Chen J, Zhang P, Wang Y, He Y, Zhang Z, Pana X, Xie E. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors. Nanoscale. 2015; 7(35): 14697-14706.

Yun TG, Hwang B il, Kim D, Hyun S, Han SM. Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl Mater Interfaces. 2015; 7(17): 9228-9234.

Chen Y, Han M, Tang Y, Bao J, Li S, Lan Y, Dai Z. Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chemical Communications. 2015; 51(62): 12377-12380.

Kalambate PK, Dar RA, Karna SP, Srivastava AK. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. J Power Sources. 2015; 276: 262-270.

Chen G-F, Liu Z-Q, Lin J-M, Li N, Su Y-Z. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors. J Power Sources. 2015; 283: 484-493.

Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim Acta. 2012; 72: 1-17.

Sivakkumar SR, Pandolfo AG. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta. 2012; 65: 280-287.

Belyakov AI. Asymmetric electrochemical supercapacitors with aqueous electrolytes. In: 3rd European Symposium on Supercapacitors and Applications. Roma; 2008: 1-3.

Lončar J. Superkondenzatori, Report, Faculty of Electrical Engineering and Computing, University of Zagreb. 2013:1-16 (na hrvatskom).