SPRAY DRYING OF PHOSPHATE-SOLUBILIZING BACTERIA FOR THE PRODUCTION OF NEW BIOFERTILIZERS

Original scientific paper

Authors

  • Steva M. Lević University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
  • Jelena Jovičić-Petrović University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
  • Milica Mirković University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
  • Slavica Kerečki University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
  • Kata Trifković Inlecom Commercial Pathways, Gateway Business Suites, Killarney, Ireland
  • Viktor Nedović University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
  • Vera Raičević University of Belgrade, Faculty of Agriculture, Belgrade, Serbia

DOI:

https://doi.org/10.2298/CICEQ241216017L

Keywords:

Azotobacter, Pseudomonas, Bacillus, encapsulation, soil

Abstract

Phosphate-solubilizing bacteria represent a sustainable solution to cope with phosphorus unavailability in agricultural soil. However, the success of their application is highly dependent on multiple environmental factors, and a novel approach is needed for bioformulations. The present study aimed to evaluate the suitability of the spray drying method for encapsulation of phosphate-solubilizing bacteria Azotobacter chroococcum F14/2, Bacillus megaterium 11/3, and Pseudomonas putida P1. Three strains were characterized, grown under optimal conditions, and encapsulated as a whole medium-cell system using the spray drying method and maltodextrin as carrier material. The described procedure provided encapsulates with an average particle size below 5 μm, moisture content under 10%, and satisfactory powder properties. The cell viability of encapsulates (after storage) was in the following order: Bacillus megaterium 11/3 > Azotobacter chroococcum F14/2 > Pseudomonas putida P1. Additional protection during spray drying was most probably achieved by the presence of microbial exopolysaccharides, which opened the possibilities for further optimization of encapsulation procedures.

References

[1] S.Z. Sattari, A.F. Bouwman, K.E. Giller, M.K. Ittersum, Proc. Natl. Acad. Sci. (PNAS) 109 (2012) 6348–6353. https://doi.org/10.1073/pnas.1113675109.

[2] C. Xiao, R. Chi, X. Pan, F. Liu, J. He, Ann. Microbiol. 63 (2013) 173–178. https://doi.org/10.1007/s13213-012-0458-z

[3] J. Li, J. Lu, H. Wang, Z. Fang, X. Wang, S. Feng, Z. Wang, T. Yuan, S. Zhang, S. Ou, X. Yang, Z. Wu, X. Du, L. Tang, B. Liao, W. Shu, P. Jia, J.L. Liang, Biol. Rev. 96 (2021) 2771–2793. https://doi.org/10.1111/brv.12779.

[4] Y. Li, Q. Li, G. Guan, S. Chen, PeerJ. 8 (2020) e9062. https://doi.org/10.7717/peerj.9062.

[5] Y. Wang, S. Peng, Q. Hua, C. Qiu, P. Wu, X. Liu, X. Lin, Front. Microbiol. 12 (2021) 693535. https://doi.org/10.3389/fmicb.2021.693535.

[6] G. Kalayu, Int. J. Agron. (2019) 4917256. https://doi.org/10.1155/2019/4917256.

[7] Y. Yi, W. Huang, Y. Ge, World J. Microbiol. Biotechnol. 24 (2008) 1059–1065. https://doi.org/10.1007/s11274-007-9575-4.

[8] A.A. Alemneh, G.R. Cawthray, Y. Zhou, M.H. Ryder, M.D. Denton, Arch. Microbiol. 203 (2021) 3825–3837. https://doi.org/10.1007/s00203-021-02364-w.

[9] S. Kerečki, I. Pećinar, V. Karličić, N. Mirković, I. Kljujev, V. Raičević, J. Jovičić-Petrović, J. Plant Interac. 17 (2022) 719–730. https://doi.org/10.1080/17429145.2022.2091802.

[10] N. Oteino, R.D. Lally, S. Kiwanuka, A. Lloyd, D. Ryan, K.J. Germaine, D.N. Dowling, Front. Microbiol. 6 (2015) 745. https://doi.org/10.3389/fmicb.2015.00745.

[11] M. Schoebitz, C. Ceballos, L. Ciampi, J. Soil. Sci. Plant Nutr. 13 (2013) 1-10. https://doi.org/10.4067/S0718-95162013005000001.

[12] N.J. Zuidam, E. Shimoni, in Encapsulation Technologies for Active Food Ingredients and Food Processing, N.J. Zuidam, V. Nedovic (eds.). New York (2010), p. 3. https://doi.org/10.1007/978-1-4419-1008-0.

[13] R. Brindavathy, M. Gnanachitra, Madras Agric. J. 104 (2017) 304–307. https://doi.org/10.29321/MAJ.2017.000066.

[14] G.R. Anderson, Soil Sci. 86 (1958) 57-62.

[15] C.S. Nautiyal, FEMS Microbiol. Lett. 170 (1999) 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.

[16] V. Karličić, D. Radić, J. Jovičić-Petrović, B. Lalević, F. Morina, V. Golubović Curguz, V. Raičević, iForest 10 (2017) 692–699. https://doi.org/10.3832/ifor2135-010.

[17] V. Lakshmanan, D. Shantharaj, G. Li, L.A. Seyfferth, A.L. Sherrieri, H.P. Bais, Planta 242 (2015) 1037–1050. .https://doi.org/10.1007/s00425-015-2340-2.

[18] M.E. Paulo, P.M. Vasconcelos, S.I. Oliveira, de Jesus M.H. Affe, R. Nascimento, S.I. de Melo, M.R. de Abreu Roque, S.A. de Assis, Food Sci. Technol. 32 (2012) 710–714. https://doi.org/10.1590/S0101-20612012005000094.

[19] C.L. Patten, B.R. Glick, Appl. Environ. Microbiol. 68 (2002) 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002.

[20] A. Kalušević, S. Lević, B. Čalija, M. Pantić, M. Belović, V. Pavlović, B. Bugarski, J. Milić, S. Žilić, V. Nedović, J. Microencapsul. 34 (2017) 475–487. https://doi.org/10.1080/02652048.2017.1354939.

[21] F. Menges, "Spectragryph - optical spectroscopy software" [software]. (2018) Available from: http://www.effemm2.de/spectragryph/ [Accessed July 7, 2024].

[22] L. Tomsone, R. Galoburda, Z. Kruma, V. Durrieu, I. Cinkmanis, Foods 9 (2020) 1332. https://doi.org/10.3390/foods9091332.

[23] The European Pharmacopoeia, 8th edition (Ph. Eur. 8.0) (2014) Strasbourg: Council of Europe.

[24] N. Jinapong, M. Suphantharika, P. Jamnong, J. Food Eng. 84 (2008) 194–205. https://doi.org/10.1016/j.jfoodeng.2007.04.032.

[25] Ø. Hammer, D.A.T. Harper, P.D. Ryan, Palaeont. Electr. 4 (2001) 9.

[26] R. Nosrati, P. Owlia, H. Saderi, I. Rasooli, M.A. Malboobi, Iran. J. Microbiol. 6 (2014) 285–295.

[27] A. Blanco-Vargas, L.M. Rodríguez-Gacha, N. Sánchez-Castro, R. Garzón-Jaramillo, L.D. Pedroza-Camacho, R.A. Poutou-Piñales, C.M. Rivera-Hoyos, L.A. Díaz-Ariza, A.M. Pedroza-Rodríguez, Heliyon 6 (2020) e05218. https://doi.org/10.1016/j.heliyon.2020.e05218.

[28] O. Margalef, J. Sardans, M. Fernández-Martínez, R. Molowny-Horas, I.A. Janssens, P. Ciais, D. Goll, A. Richter, M. Obersteiner, D. Asensio, J. Peñuelas, Sci. Rep. 7 (2017) 1337. https://doi.org/10.1038/s41598-017-01418-8.

[29] Y. Yi, W. Huang, Y. Ge, World J. Microbiol. Biotechnol. 24 (2008) 1059–1065. https://doi.org/10.1007/s11274-007-9575-4.

[30] G.Y. Celik, B. Aslim, Y. Beyatli, Carbohydr. Polym. 73 (2008) 178–182. https://doi.org/10.1016/j.carbpol.2007.11.021.

[31] V. Sandhya, Sk. Z. Ali, Microbiology 84 (2015) 512–519. https://doi.org/10.1134/S0026261715040153.

[32] C. Bianco, R. Defez, Appl. Environ. Microbiol. 76 (2010) 4626–4632. https://doi.org/10.1128/AEM.02756-09.

[33] S. Srivastava, S. Srivastava, Sci. Rep. 10 (2020) 5855. https://doi.org/10.1038/s41598-020-62725-1.

[34] X.X. Zhang, P.B. Rainey, Evolution 67 (2013) 3161–3174. https://doi.org/10.1111/evo.12183.

[35] B.M. Arbaugh, F. Rezaei, M. Mohiti-Asli, S. Pena, H.B. Scher, T. Jeoh, ACS Agric. Sci. Technol. 2 (2022) 950–959. https://doi.org/10.1021/acsagscitech.2c00107.

[36] A.M. Kalušević, S.M. Lević, B.R. Čalija, J.R. Milić, V.B. Pavlović, B.M. Bugarski, V.A. Nedović, J. Food Sci. Technol. 54 (2017) 3411–3420. https://doi.org/10.1007/s13197-017-2790-6

[37] S.S. Gauri, S.M. Mandal, B.R. Pati. Appl. Microbiol. Biotechnol. 95 (2012) 331–338. https://doi.org/10.1007/s00253-012-4159-0.

[38] L. Yonekura, H. Sun, C. Soukoulis, I. Fisk, J. Funct. Foods 6 (2014) 205–214. https://doi.org/10.1016/j.jff.2013.10.008.

[39] D.P. Vargas-Muñoz, L.E. Kurozawa, Braz. J. Food Technol. 23 (2020) e2019254. https://doi.org/10.1590/1981-6723.25419.

[40] S. Stamenković Stojanović, I. Karabegović, B. Danilović, V. Nedović, A. Kalušević, S. Mančić, M. Lazić, Span. J. Agric. Res. 20 (2022) e0803. https://doi.org/10.5424/sjar/2022203-19062

Downloads

Published

— Updated on 25.06.2025

Issue

Section

Articles

How to Cite

SPRAY DRYING OF PHOSPHATE-SOLUBILIZING BACTERIA FOR THE PRODUCTION OF NEW BIOFERTILIZERS : Original scientific paper. (2025). Chemical Industry & Chemical Engineering Quarterly. https://doi.org/10.2298/CICEQ241216017L

Most read articles by the same author(s)