DEVELOPMENT OF A MULTI-LAYERED, WATERPROOF, BREATHABLE FABRIC FOR FULL-WEATHER APPAREL Original scientific paper

Main Article Content

Imene Ghezal
https://orcid.org/0000-0002-4687-7022
Ali Moussa
Imed Ben Marzoug
Ahmida El-Achari
Christine Campagne
Faouzi Sakli

Abstract

In this research, a laminate was produced by assembling five textile layers. These layers were a coated double-sided knitted structure, a non-woven fabric, a hydrophilic membrane that was thermally assembled to a surface veil, and an open-work knitted fabric. The laminated textile's breathability, windproofness, and waterproofness were evaluated. The multi-layered fabric was windproof, and its water vapor permeability was                      347.297 g×m-2×s-1 (CV= 8.902%). Its resistance to water penetration was equal to 117.68 Schmerber (CV = 7.81%). The assembled fabric's mechanical properties were also evaluated. Young’s modulus values were equal to 2 MPa (CV= 8.613%) and 1.6 MPa (CV= 8.349%) for both fabric directions. Its flexural rigidity was 5056.659 mg×cm and its surface total deformation was lower than 450 µm when measured under 20, 40, 60, and 80 mN loads. Based on the results obtained, it was concluded that the developed multi-layered fabric could be used to produce raincoats and jackets to protect the wearer from light rain and drizzle.

Article Details

How to Cite
Ghezal, I. ., Moussa, A. ., Ben Marzoug, I. ., El-Achari, A. ., Campagne, C., & Sakli, F. . (2024). DEVELOPMENT OF A MULTI-LAYERED, WATERPROOF, BREATHABLE FABRIC FOR FULL-WEATHER APPAREL: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(3), 265–273. https://doi.org/10.2298/CICEQ230407029G
Section
Articles

References

I. Ozen, J. Eng. Fiber. Fabr. 7 (2012) 63–69. https://doi.org/10.1177/155892501200700402

J. Zhao, X. Wang, Y. Xu, P. He, Y. Si, L. Liu, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 12 (2020) 15911–15918. https://doi.org/10.1021/acsami.0c00846

Y. Liu, X. Zhu, Y. Chen, C. Zhou, Z. Chen, M. Hao, X. Hu, B. Yan, Text. Res. J., 93 (2023) 2273-2289. https://doi.org/10.1177/00405175221144086

Y.J. Ren, J.E. Ruckman, Int. J. Cloth. Sci. Technol. 16 (2004) 335–347. https://doi.org/10.1108/09556220410527255

S. Kaplan, A. Okur, The meaning and importance of clothing comfort: A case study for Turkey, J. Sens. Stud., 23 (2008) 688–706. https://doi.org/10.1111/j.1745-459X.2008.00180.x

B. Das, A. Das, V.K. Kothari, R. Fanguiero, M. de Araújo, Autex Res. J. 7 (2007) 100–110. https://www.autexrj.com/cms/zalaczone_pliki/4-07-2.pdf

B. Das, A. Das, V.K. Kothari, R. Fangueiro, M. de Araújo, Autex Res. J. 7 (2007) 194–216. https://www.autexrj.com/cms/zalaczone_pliki/5-07-3.pdf

H.Z. Özek, in Waterproof and Water Repellent Textiles and Clothing, J. Williams Ed., Woodhead Publishing, Sawston (2018), p. 25. https://doi.org/10.1016/B978-0-08-101212-3.00002-2

A. Sadighzadeh, M. Valinejad, A. Gazmeh, B. Rezaiefard, Polym. Eng. Sci. 56 (2016) 143–149. https://doi.org/10.1002/pen.24200

T. Zhang, Z. Xu, J. Zhao, L. Huang, Macromol. Mater. Eng. 305 (2020) 2000370. https://doi.org/10.1002/mame.202000370

N. Oğlakcıoğlu, C. Akduman, B. Sarı, Polym. Eng. Sci. 61 (2021) 669–679. https://doi.org/10.1002/pen.25607

A. Mukhopadhyay, V.K. Midha, J. Ind. Text. 37 (2008) 225–262. https://doi.org/10.1177/1528083707082164.

A. Mukhopadhyay, V.K. Vinay Kumar Midha, J. Ind. Text. 38 (2008) 17–41. https://doi.org/10.1177/1528083707082166

I. Jahan,, Adv. Res. Text. Eng. 2 (2017). https://austinpublishinggroup.com/textile-engineering/fulltext/arte-v2-id1018.php

D. Sun, in High-Performance Apparel, J. McLoughlin, T. Sabir Eds., Woodhead Publishing, Sawston (2017), p. 307. https://doi.org/10.1016/B978-0-08-100904-8.00015-8

Market Research Report (UC 6368), Waterproof Breathable Textiles Market by product type (densely woven, coated, and membranes) by fabric type (ePTFE, PU, TPU, and other) by application (garments, footwear, accessories) and by Region-Global forecast to 2030, https://www.marketsandmarkets.com/Market-Reports/waterproof-breathable-textiles-market-243428009.html [accessed 5 November 2023]

I. Ghezal, A. Moussa, I. Ben Marzoug, A. El-Achari, C. Campagne, F. Sakli, Coatings, 12 (2022) 1572. https://doi.org/10.3390/coatings12101572

E. Öner, A. Okur, J. Text. Inst. 106 (2015) 1403–1414. https://doi.org/10.1080/00405000.2014.995931

International Organization for Standardization, ISO 9237: Determination of the Permeability of Fabrics to Air (1995). https://www.iso.org/standard/16869.html

S. Wenger, R. Csapo, M. Hasler, B. Caven, T. Wright, T. Bechtold, W. Nachbauer, Text. Res. J. 89 (2019) 528–540. https://doi.org/10.1177/0040517517750648

T.H. Chen, W.P. Chen, M.J.J. Wang, J. Occup. Environ. Hyg. 11 (2014) 366–376. https://doi.org/10.1080/15459624.2013.875181

The British Standards Institution, BS 7209:Water Vapor Permeable Apparel Fabrics (1990). https://knowledge.bsigroup.com/products/specification-for-water-vapour-permeable-apparel-fabrics/standard

International Organization for Standardization, ISO 811: Determination of Resistance to Water Penetration- Hydrostatic Pressure Test (2018). https://www.iso.org/standard/65149.html

International Organization for Standardization, ISO 13934-1: Tensile Properties of Fabrics -- Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method (2013). https://www.iso.org/standard/60676.html

American Society for Testing Mmaterials, ASTM D1388-18: Standard Test Method for Stiffness of Fabrics (2002). https://www.astm.org/d1388-18.html

I. Ghezal, A. Moussa, I. Ben Marzoug, A. El-Achari, C. Campagne, F. Sakli, Fibers Polym. 21 (2020) 910–920. https://doi.org/10.1007/s12221-020-8936-6

S. Houshyar, R. Padhye, O. Troynikov, R. Nayak, S. Ranjan, J. Text. Inst., 106 (2015) 1394–1402. https://doi.org/10.1080/00405000.2014.995930

International Organization for Standardization, ISO 3801: Woven Fabrics Determination of Mass Per Unit Length and Mass Per Unit Area (1977). https://www.iso.org/standard/9335.html

International Organization for Standardization, ISO 5084: Determination of Thickness of Textiles and Textile Products (1996). https://www.iso.org/standard/23348.html

R. Mishra, J. Militky, M. Venkataraman, in Nanotechnology in Textiles: Theory and Application, R. Mishra, J. Militky Eds., Woodhead Publishing, Sawston (2019), p. 311. https://doi.org/10.1016/B978-0-08-102609-0.00007-9

P. Li, Q. Zhang, T.T. Chadyagondo, G. Li, H. Gu, N. Li, Fibers Polym. 21 (2020) 1444–1452. https://doi.org/10.1007/s12221-020-9860-5

A.R. Tehrani-Bagha, Adv. Colloid Interface Sci. 268 (2019) 114–135. https://doi.org/10.1016/j.cis.2019.03.006

W. Zhou, X. Yu, Y. Li, W. Jiao, Y. Si, J. Yu, B. Ding, ACS Appl. Mater. Interfaces, 13 (2021) 2081–2090. https://doi.org/10.1021/acsami.0c20172

E.A. McCullough, M. Kwon, H. Shim, Meas. Sci. Technol., 14 (2003) 1402–1408. https://doi.org/10.1088/0957-0233/14/8/328

A. Gugliuzza, E. Drioli, J. Memb. Sci., 446 (2013) 350–375. https://doi.org/10.1016/j.memsci.2013.07.014

A. Mukhopadhyay, V.K. Midha, Waterproof breathable fabrics, in Handbook of Technical Textiles: Volume 2: Technical Textile Apllications, A. Richard Horroks, Subhash C.Anand Eds., Woodhead Publishing, Sawston (2016),p. 27. https://doi.org/10.1016/B978-1-78242-465-9.00002-1

Y. Yang, L. Chen, T. Naveed, P. Zhang, A. Farooq, Text. Res. J. 89 (2019) 1983–1996. https://doi.org/10.1177/0040517518783349

A.H. Taieb, S. Msahli, F. Sakli, J. Text. Eng. Fash. Technol. 5 (2019) 111–117. https://doi.org/10.15406/jteft.2019.05.00191

I. Ghezal, A. Moussa, I. Ben Marzoug, A. El-Achari, C. Campagne, F. Sakli, Cloth. Text. Res. J. 37 (2019) 235–248. https://doi.org/10.1177/0887302X19850637