CROSS-LINKED WHOLE CELLS FOR THE SUCROSE TRANSFRUCTOSYLATION REACTION IN A CONTINUOUS REACTOR Original scientific paper

Main Article Content

Beatriz Menossi Ribeiro
https://orcid.org/0000-0003-2387-7449
Leandro da Rin de Sandre Junior
Giancarlo de Souza Dias
Michelle da Cunha Abreu Xavier
https://orcid.org/0000-0003-3564-6007
Alex Fernando de Almeida
Elda Sabino da Silva
https://orcid.org/0000-0001-8258-9936
Alfredo Eduardo Maiorano
https://orcid.org/0000-0003-1230-5453
Rafael Firmani Perna
https://orcid.org/0000-0003-3195-8898
Sergio Andres Villalba Morales

Abstract

Fructooligosaccharides (FOS) are fructose oligomers beneficial to human health and nutrition for prebiotic sugars. Their production occurs by a transfructosylation reaction in sucrose molecules catalyzed by fructosyltransferase enzymes (FTase, E.C.2.4.1.9) adhered to microbial cells. The purpose of this work was to study the preparation, enzymatic activity, and stability of glutaraldehyde-crosslinked Aspergillus oryzae IPT-301 cells used as a biocatalyst for the transfructosylation reaction of sucrose in a packed bed reactor (PBR), aiming at FOS production. The highest transfructosylation activity (AT) was presented by the biocatalyst prepared by cross-linking at 200 rpm and 45 min. The highest AT in the PBR was obtained at 50 °C, with flow rates from 3 mL min-1 to 5 mL min-1 and sucrose concentrations of 473 g L-1 and 500 g L-1. The enzymatic kinetics was described using the Michaelis-Menten model. Finally, the biocatalyst showed constant AT of approximately 75 U g-1 and 300 U g-1 for 12 h of reaction in the PBR operating in continuous and discontinuous flow, respectively. These results demonstrate a high potential of glutaraldehyde-crosslinked A. oryzae IPT-301 cells as heterogeneous biocatalysts for the continuous production of FOS in PBR reactors.


 

Article Details

How to Cite
Ribeiro, B. M. ., de Sandre Junior, L. da R., Dias, G. de S. ., Abreu Xavier, M. da C., de Almeida, A. F., Sabino da Silva, E. ., Maiorano, A. E., Perna, R. F., & Villalba Morales, S. A. . (2023). CROSS-LINKED WHOLE CELLS FOR THE SUCROSE TRANSFRUCTOSYLATION REACTION IN A CONTINUOUS REACTOR: Original scientific paper. Chemical Industry & Chemical Engineering Quarterly, 30(2), 99–110. https://doi.org/10.2298/CICEQ221220015M
Section
Articles

References

J.S. Cunha, C.A. Ottoni, S.A.V. Morales, E.S. Silva, A.E. Maiorano, R.F. Perna, Brazilian J. Chem. Eng. 36 (2019) 657—668. https://doi.org/10.1590/0104-6632.20190362s20180572.

M.B.P.O. Silva, D. Abdal, J.P.Z. Prado, G.S. Dias, S.A.V. Morales, M.C.A. Xavier, A.F. de Almeida, E.S. da Silva, A.E. Maiorano, R.F. Perna, Brazilian J. Food Technol. 24 (2021) 1—11. https://doi.org/10.1590/1981-6723.28320.

R.L. Garcia, G.S. Dias, S.A.V. Morales, M.C.A. Xavier, E.S. Silva, A.E. Maiorano, P.W. Tardioli, R.F. Perna, Brazilian J. Chem. Eng. 38 (2021) 273—285. https://doi.org/10.1007/s43153-021-00110-9.

C. Nobre, E.G.A. Filho, F.A.N. Fernandes, E.S. Brito, S. Rodrigues, J.A. Teixeira, L.R. Rodrigues, Lwt. 89 (2018) 58—64. https://doi.org/10.1016/j.lwt.2017.10.015.

G.S. Dias, E.D. Santos, M.C.A. Xavier, A.F. Almeida, E.S. Silva, A.E. Maiorano, R.F. Perna, S.A.V. Morales, J. Chem. Technol. Biotechnol. (2022). https://doi.org/10.1002/jctb.7163.

A.S.G. Lorenzoni, L.F. Aydos, M.P. Klein, M.A.Z. Ayub, R.C. Rodrigues, P.F. Hertz, J. Mol. Catal. B Enzym. 111 (2015) 51—55. https://doi.org/10.1016/j.molcatb.2014.11.002.

P. Zambelli, L. Tamborini, S. Cazzamalli, A. Pinto, S. Arioli, S. Balzaretti, F.J. Plou, L. Fernandez-Arrojo, F. Molinari, P. Conti, D. Romano, Food Chem. 190 (2016) 607—613. https://doi.org/10.1016/j.foodchem.2015.06.002.

K.H. Jung, S.H. Bang, T.K. Oh, H.J. Park, Biotechnol. Lett. 33 (2011) 1621—1624. https://doi.org/10.1007/s10529-011-0606-8.

E. Aguiar-Oliveira, F. Maugeri, Brazilian J. Chem. Eng. 28 (2011) 363—372. https://doi.org/10.1590/S0104-66322011000300002.

L.L. Faria, S.A.V. Morales, J.P.Z. Prado, G.S. Dias, A.F. de Almeida, M.C.A. Xavier, E.S. da Silva, A.E. Maiorano, R.F. Perna, Biotechnol. Lett. 43 (2021) 43—59. https://doi.org/10.1007/s10529-020-03016-7.

L.A. Garcia, J.P.Z. Prado, S.A.V. Morales, M.C.A. Xavier, M.S. Lopes, E.S. da Silva, A.E. Maiorano, R.F.K. Gunnewiek, R.F. Perna, Mater. Today Commun. 31 (2022). https://doi.org/10.1016/j.mtcomm.2022.103588.

L. Canilha, W. De Carvalho, Biotecnol. Ciência e Desenvolv. Ano IX. (2006) 48—57.

C.C. Castro, C. Nobre, M.E. Duprez, G. De Weireld, A.L. Hantson, Biochem. Eng. J. 118 (2017) 82—90. https://doi.org/10.1016/j.bej.2016.11.011.

R.C. Fernandez, C.A. Ottoni, E.S. Da Silva, R.M.S. Matsubara, J.M. Carter, L.R. Magossi, M.A.A. Wada, M.F. De Andrade Rodrigues, B.G. Maresma, A.E. Maiorano, Appl. Microbiol. Biotechnol. 75 (2007) 87—93. https://doi.org/10.1007/s00253-006-0803-x.

M.C.P. Gonçalves, S.A.V. Morales, E.S. Silva, A.E. Maiorano, R.F. Perna, T.G. Kieckbusch, J. Chem. Technol. Biotechnol. 95 (2020) 2473—2482. https://doi.org/10.1002/jctb.6429.

C.A. Ottoni, R. Cuervo-Fernández, R.M. Piccoli, R. Moreira, B. Guilarte-Maresma, E.S. Da Silva, M.F.A. Rodrigues, A.E. Maiorano, Brazilian J. Chem. Eng. 29 (2012) 49—59. https://doi.org/10.1590/S0104-66322012000100006.

M.A. Ganaie, H.K. Rawat, O.A. Wani, U.S. Gupta, N. Kango, Process Biochem. 49 (2014) 840—844. https://doi.org/10.1016/j.procbio.2014.01.026.

A.A. Homaei, R. Sahiri, F. Vianello, R. Stevanato, J. Chem. Biol. 6 (2013) 185—205. https://doi.org/10.1007/s12154-013-0102-9.

E.L. Cussler, Diffusion mass transfer in fluid systems, Cambridge University Press, New York (2009), p. 655. ISBN: 9780521871211.

H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, (2019), p. 993. ISBN: 9780133887518.

C.J. Geankopolis, Transport Process and Unit Operations, Prentice-Hall International, New Jersey (1993), p. 937. ISBN: 0-13-045253-X.

M. Starzak, S.D. Peacock, Zuckerindustrie. 122 (1997) 380—387. ISSN 03448657. https://www.researchgate.net/publication/286862720.

M. Mathlouthi, P. Reiser, Sucrose: Properties and Applications, Chapman & Hall, (1995), p. 307. ISBN: 9781461361503.

I.M. Araújo, P.C. Becalette, E.S. da Silva, G.S. Dias, M.C.A. Xavier, A.F. de Almeida, A.E. Maiorano, S.A.V. Morales, R.F. Perna, J. Chem. Technol. Biotechnol. (2022). https://doi.org/10.1002/jctb.7255.

J. Nielsen, Adv. Biochem. Eng. Biotechnol. 46 (1992) 187—223. https://doi.org/10.1007/bfb0000711.

V.G. Elizei, S.M. Chalfoun, D.M. dos S. Botelho, P.P.R. Rebelles, Arq. Inst. Biol., Sao Paulo 81 (2014) 165—172. https://doi.org/10.1590/1808-1657001032012.

I.A. Soares, A.C. Flores, L. Zanettin, H.K. Pin, M.M. Mendonça, R.P. Barcelos, L.R. Trevisol, R.D. Carvalho, D. Schauren, C.L. de M.S.C. da Rocha, S. Baroni, Cienc. e Tecnol. Aliment. 30 (2010) 700—705. https://doi.org/10.1590/S0101-20612010000300021.

K. Long, H.M. Ghazali, A. Ariff, K. Ampon, C. Bucke, Biotechnol. Lett. 18 (1996) 1169—1174. https://doi.org/10.1007/bf01398317.

T. Sun, W. Du, D. Liu, L. Dai, Process Biochem. 45 (2010) 1192—1195. https://doi.org/10.1016/j.procbio.2010.03.037.

O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem. 47 (2012) 1220—1227. https://doi.org/10.1016/j.procbio.2012.04.019.

J.M. Guisan, Immobilization of Enzymes and Cells, Humana Press, New York (2013), p. 375. ISBN: 978-1-62703-550-7.

A.E. Maiorano, E.S. da Silva, R.F. Perna, C.A. Ottoni, R.A.M. Piccoli, R.C. Fernandez, B.G. Maresma, M.F.A. Rodrigues, Biotechnol. Lett. 42 (2020) 2619—2629. https://doi.org/10.1007/s10529-020-03006-9.

J.S. Lim, J.H. Lee, J.M. Kim, S.W. Park, S.W. Kim, Biotechnol. Bioprocess Eng. 11 (2006) 100—104. https://doi.org/10.1007/BF02931891.

J. Su, S. Jia, X. Chen, H. Yu, J. Appl. Phycol. 20 (2008) 213—217. https://doi.org/10.1007/s10811-007-9221-4.

I. Mahasiswa, E. Indonesia, U.G. Mada, World J. Chem. 4 (2009) 34—38.

Y. Bakri, A. Mekaeel, A. Koreih, Brazilian Arch. Biol. Technol. 54 (2011) 659—664. https://doi.org/10.1590/s1516-89132011000400003.

I.L. Furlani, B.S. Amaral, R. V. Oliveira, Q.B. Cassa, Quim. Nova. 43 (2020) 463—473. https://doi.org/10.21577/0100-4042.20170525.

P.A. Fields, Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 129 (2001) 417—431. https://doi.org/10.1016/S1095-6433(00)00359-7.

V.M. Almeida, S.R. Marana, PLoS One. 14 (2019) 1—8. https://doi.org/10.1371/journal.pone.0212977.

E. Gomes, M.A.U. Guez, N. Martin, R. da Silva, Quim. Nova. 30 (2007) 136—145. https://doi.org/10.1590/S0100-40422007000100025.

D. de Andrades, N.G. Graebin, M.K. Kadowaki, M.A.Z. Ayub, R. Fernandez-Lafuente, R.C. Rodrigues, Int. J. Biol. Macromol. 129 (2019) 672—678.https://doi.org/10.1016/j.ijbiomac.2019.02.057.

M. Antošová, M. Polakovič, Chem. Pap. 55 (2001) 350—358. https://www.chempap.org/file_access.php?file=556a350.pdf.

P. Monsan, J. Mol. Catal. 3 (1978) 371—384. https://doi.org/10.1016/0304-5102(78)80026-1.

R. Satar, M.A. Jafri, M. Rasool, S.A. Ansari, Brazilian Arch. Biol. Technol. 60 (2017) 1—12. https://doi.org/10.1590/1678-4324-2017160311.

H. Veny, M.K. Aroua, N.M.N. Sulaiman, Chem. Eng. J. 237 (2014) 123—130. https://doi.org/10.1016/j.cej.2013.10.010.

W. Sieng, A. Yuniarto, J. Environ. Chem. Eng. 7 (2019) 103185. https://doi.org/10.1016/j.jece.2019.103185.

Most read articles by the same author(s)