Numeričko ispitivanje slobodne konvekcije unutar kružne šupljine sa fleksibilnim perajem Naučni rad
Glavni sadržaj članka
Apstrakt
U ovom radu numerički je proučavan problem nestalne prirodne konvekcije unutar kružne šupljine koja sadrži fleksibilno peraje. Leva strana šupljine je vruća, dok je desna hladna. Fleksibilno elastično peraje je pričvršćeno za centar vrućeg zida. Interakcija fluida i strukture u šupljini i fleksibilnim perajem je kom¬binovana sa Njutnovim fluidom. Glavne jednačine interakcije fluid-fleksibilna peraja su rešene pri¬menom metode konačnih elemenata i proizvoljnog Lagranž-Eulerovog pristupa. U ovoj studiji ispitivani su efekti elastičnog fleksibilnog peraja na prirodnu konvekciju unutar kružnih šupljina. Rejlijev broj (103 ≤ Ra ≤ 105) i modul elastičnosti (1010 ≤ Et ≤ 1011) su parametri koji su ispitivani, kao i prosečni Nuseltovi brojevi i izoterme i strujne linije. Rezultati pokazuju da povećanje Relejovog broja izaziva povećanje prosečnog Nuseltovog broja, koji postaje značajan za veći Rejlijev broj. Time je otkriveno da kružni oblik šupljine može poboljšati brzinu prenosa toplote
Detalji članka
Broj časopisa
Rubrika

Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Reference
[1] Turkyilmazoglu M. Exponential nonuniform wall heating of a square cavity and natural convection. Chin J Phys. 2022; 77: 2122-2135.https://dx.doi.org/10.1016/j.cjph.2021.12.021
[2] Mehryan SAM, Ghalambaz M, Ismael MA, Chamkha AJ. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J Magn Magn. 2016; 424: 161-173. https://dx.doi.org/10.1016/j.jmmm.2016.09.123
[3] Jamesahar I, Halambaz MG, Chamkha AJ. Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int J Heat Mass Transf. 2016; 100: 303-319. https://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.046
[4] Shahrestani AB, Alshuraiaan B, Izadi M. Combined natural convection-FSI inside a circular enclosure divided by a movable barrier. Int Commun Heat Mass Transf. 2021; 126: 105426. https://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105426
[5] Ghalambaz M, Mehryan SAM, Alsabery AI, Hajjar A, Izadi M,Chamkha A. Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure. Meccanica. 2020; 55: 1561-1584. https://dx.doi.org/10.1007/s11012-020-01194-2
[6] Ismael MA, Jasim HF. Role of the fluid-structure interaction in mixed convection in a vented cavity. Int J Mech. Sci. 2017; 135: 190-202. https://dx.doi.org/10.1016/j.ijmecsci.2017.11.001
[7] Sabbar WA, Ismael MA, Almudhaffar M. Fluid-structure interaction of mixed convection in a cavity-channel assembly of flexible wall. Int J Mech. Sci. 2018; 149: 73-83. https://dx.doi.org/10.1016/j.ijmecsci.2018.09.041
[8] Alsabery AI, Selimefendigil F, Hashim I, Chamkha AJ, Ghalambaz M. Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int J Heat Mass Transf. 2019; 140: 331-345. https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.06.003
[9] Alsabery AI, Sheremet MA, Ghalambaz M, Chamkha AJ, Hashim I. Fluid-structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating. Appl Therm Eng. 2018; 145: 80-97. https://dx.doi.org/10.1016/j.applthermaleng.2018.09.039
[10] Ghalambaz M, Jamesahar E, Ismael MA, Chamkha AJ. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int J Therm Sci. 2016; 111: 256-273. https://dx.doi.org/10.1016/j.ijthermalsci.2016.09.001
[11] Saleh H, Naganthran K, Hashim I, Ghalambaz M, Nazar R. Role of fluid-structure interaction in free convection in square open cavity with double flexible oscillating fins. Alex Eng J. 2021; 61: 1217-1234. https://dx.doi.org/10.1016/j.aej.2021.04.073
[12] Raisi A, Arvin I. A numerical study of the effect of fluid-structure interaction on transient natural convection in an air-filled square cavity. Int J Therm Sci. 2018; 128: 1-14. https://dx.doi.org/10.1016/j.ijthermalsci.2018.02.012
[13] Khanafer K, Vafai K. Effect of a circular cylinder and flexible wall on natural convective heat transfer characteristics in a cavity filled with a porous medium. Appl Therm Eng. 2020; 181: 115989. https://dx.doi.org/10.1016/j.applthermaleng.2020.115989
[14] Khalil WH, Azzawi IDJ, Al-damook A. The optimisation of MHD free convection inside porous trapezoidal cavity with the wavy bottom wall using response surface method. Int Commun Heat Mass Transf. 2022; 134: 106035. https://dx.doi.org/10.1016/j.icheatmasstransfer.2022.106035
[15] Moria H. Natural convection in an L-shape cavity equipped with heating blocks and porous layers. Int Commun Heat Mass Transf. 2021; 126: 105375. https://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105375
[16] Saleh H, Hashim I, Jamesearl E, Ghalambaz M. Effects of flexible fin on natural convection in enclosure partially-filled with porous medium. Alex Eng J. 2020; 59: 3515-3529. https://dx.doi.org/10.1016/j.aej.2020.05.034
[17] Mehryan SAM, Alsabery A, Modir A, Izadpanahi E, Ghalambaz M. Fluid-structure interaction of a hot flexible thin plate inside an enclosure. Int J Therm Sci. 2020; 153: 106340. https://dx.doi.org/10.1016/j.ijthermalsci.2020.106340
[18] Savio RR, Shaik S, Kumar RS. Numerical study of natural convection around a square cylinder within a square enclosure for different orientations. J Therm Anal Calorim. 2021; 147: 1711-1725. https://dx.doi.org/10.1007/s10973-020-10499-z
[19] Subhani S, Kumar RS. Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure. J Therm Anal Calorim. 2021; 147: 4711-4729. https://dx.doi.org/10.1007/s10973-021-10829-9
[20] Pal GC, Nammi G, Pati S, Randive PR, Baranyi L. Natural convection in an enclosure with a pair of cylinders under magnetic field. Case Stud Therm Eng. 2022; 30: 101763. https://dx.doi.org/10.1016/j.csite.2022.101763
[21] Long T, Huang C, Hu D, Liu M. Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems. Ocean Eng. 2021; 225: 108772. https://dx.doi.org/10.1016/j.oceaneng.2021.108772
[22] Hakim MdA, Ahad AI, Karim AUl, Saha S, Hasan MN. Fluid structure interaction and heat transfer enhancement with dynamic flexible flow modulator. Int Commun Heat Mass Transf. 2022; 134: 105983. https://dx.doi.org/10.1016/j.icheatmasstransfer.2022.105983
[23] Gilmanov A, Le TB, Sotiropoulos FA. Numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys. 2015; 300: 814-843. https://dx.doi.org/10.1016/j.jcp.2015.08.008
[24] Shahabadi M, Mehryan SAM, Ghalambaz M, Ismael M. Controlling the natural convection of a non-Newtonian fluid using a flexible fin. Appl Math Model. 2020; 92: 669-686. https://dx.doi.org/10.1016/j.apm.2020.11.029
[25] Ghalambaz M, Mehryan SAM, Feeoj RK, Hajjar A, Hashim I, Mahan RB. Free convective heat transfer of a non-Newtonian fluid in a cavity containing a thin flexible heater plate: an Eulerian–Lagrangian approach. J Therm Anal Calorim. 2020; 147: 1809-1824. https://dx.doi.org/10.1007/s10973-020-10292-y
[26] Zadeh SMH, Mehryan SAM, Izadpanahic E, Ghalambaz M. Impacts of the flexibility of a thin heater plate on the natural convection heat transfer. Int J Therm Sci. 2019; 145: 106001. https://dx.doi.org/10.1016/j.ijthermalsci.2019.106001
[27] Sairamu M, Chhabra RP. Natural convection in power-law fluids from a tilted square in an enclosure. Ocean Eng. 2012; 56: 319-339. https://dx.doi.org/j.ijheatmasstransfer.2012.09.033
[28] Turan O, Sachdeva A, Chakraborty N, Poole RJ. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Non-Newton Fluid Mech. 2011; 166: 1049-1063. https://dx.doi.org/10.1016/j.jnnfm.2011.06.003
[29] Su ZG, Li TF, Luo K, Wu J, Yi HL. Electro-thermo-convection in non-Newtonian power-law fluids within rectangular enclosures. J Non-Newton Fluid Mech. 2020; 288: 2122-2135. https://dx.doi.org/10.1016/j.jnnfm.2020.104470
[30] Salehpour A, Sadatlub MA, Sojoudi A. Unsteady Natural Convection in a Differentially Heated Rectangular Enclosure Possessing Sinusoidal Corrugated Side Walls Loaded with Power Law Non-Newtonian Fluid. Fluid Dyn. 2019; 54: 159-176. https://dx.doi.org/10.1134/S0015462819010129
[31] Gangawane KM, Manikandan B. Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power-law fluids. Chin J Chem Eng. 2016; 25: 555-571. https://dx.doi.org/10.1016/j.cjche.2016.08.028
[32] Zhou X, Sun Z. Numerical investigation of non-Newtonian power-law flows using B-spline material point method. J Non-Newton Fluid Mech. 2021; 298: 104678. https://dx.doi.org/10.1016/j.jnnfm.2021.104678
[33] Pandey S, Cho HW, Choi HK, Park YG, Seo YM, Ha MY. Thermal and flow characteristics of buoyancy-driven non-Newtonian flows at a high Rayleigh number of 107 and predictions from an artificial neural network. J Mech Sci Technol. 2021;35: 1791-1805. https://dx.doi.org/10.1007/s12206-021-0341-6
[34] KebritiS, Moqtaderi H. Numerical simulation of convective non-Newtonian power-law solid-liquid phase change using the lattice Boltzmann method. Int J Therm Sci. 2020; 159: 106574. https://dx.doi.org/10.1016/j.ijthermalsci.2020.106574
[35] Jain SR, Subhani S, Kumar, RS. Numerical study on performance enhancement of a square enclosure with a circular cylinder of varying geometries. J Therm Anal Calorim. 2021; 147: 2579-2599. https://dx.doi.org/10.1007/s10973-021-10641-5
[36] Loenko DS, Shenoy A, Sheremet MA. Effect of time-dependent wall temperature on natural convection of a non-Newtonian fluid in an enclosure. Ocean Eng. 2021; 166: 319-339. https://dx.doi.org/10.1016/j.ijthermalsci.2021.106973
[37] Abdulkadhim A, Abed IM, Said NM. Review of Natural Convection Within Various Shapes of Enclosures. Arab J Sci Eng. 2021; 46: 11543-11586. https://dx.doi.org/10.1007/s13369-021-05952-6
[38] Yang P, Huang C, Zhang Z, Long T, Liu M. Simulating natural convection with high Rayleigh numbers using the Smoothed Particle Hydrodynamics method. Int J Heat Mass Transf. 2020; 166: 2122-2135. https://dx.doi.org/10.1016/j.cjph.2021.12.021