Controllable arrangement of integrated obstacles in silicon microchannels etched in 25 wt % TMAH

Main Article Content

Milče M. Smiljanić
Branislav Rađenović
Žarko Lazić
Marija Radmilović Rađenović
Milena Rašljić Rafajilović
Katarina Cvetanović Zobenica
Evgenija Milinković
Ana Filipović

Abstract

In this paper, fabrication of silicon microchannels with integrated obstacles by using 25 wt % tetramethylammonium hydroxide (TMAH) aqueous solution at the temperature of 80 oC is presented and analysed. We studied basic island patterns, which present union of two symmetrical parallelograms with the sides along predetermined crystallographic directions <n10> (2<n<8) and <100>. Acute angles of the parallelograms were smaller than 45o. We have derived analytical relations for determining dimensions of the integrated obstacles. The developed etching technique provides reduction of the distance between the obstacles. Before the experiments, we performed simulations of pattern etching based on the level set method and presented evolution of the etched basic patterns for the predetermined crystallographic directions <n10>. Combination of basic patterns with sides along the <610> and <100> crystallographic directions is used to fabricate a matrix of two row of silicon obstacles in a microchannel. We obtained a good agreement between the experimental results and simulations. Our results enable simple and cost-effective fabrication of various complex microfluidic silicon platforms with integrated obstacles.

Article Details

Section
Chemical Engineering - Simulation and Optimization

References

Gosalvez MA, Zubel I, Viinikka E. Wet Etching of Silicon. In: Lindroos V, Tilli М, Lehto А, Motooka T, William A., ed. Handbook of Silicon Based MEMS Materials and Technologies. (William Andrew, Elsevier); 2010:375-407.

Frühauf Ј. Shape and Functional Elements of the Bulk Silicon Microtechnique. Berlin: Springer-Verlag, Berlin; 2005.

Pal P, Sato K. Silicon wet etching for MEMS. Pan Stanford Publishing, Singapore: Taylor&Francis; 2017.

Shikida М, Sato К, Tokoro K, Uchikawa D. Differences in anisotropic etching properties of KOH and TMAH solutions. Sensors and Actuators A. 2000; 80: 179-188.

Sato K, Shikida M, Yamashiro T, Asaumi K, Iriye Y, Yamamoto M. Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensors and Actuators A. 1999; 73: 131-137.

Resnik D, Vrtacnik D, Aljancic U, Amon S. Wet etching of silicon structures bounded by (311) sidewalls. Microelectronic Engineering. 2000; 51-52: 555-566.

Resnik D, Vrtacnik D, Amon S. Morphological study of {311} crystal planes anisotropically etched in (100) silicon: role of etchants and etching parameters. J. Micromech. Microeng. 2000; 10: 430-439.

Yang H, Bao M, Shen S, Li X, Zhang D, Wu G. A novel technique for measuring etch rate distribution of Si. Sensors and Actuators A. 2000; 79: 136-140.

Landsberger LM, Naseh S, Kahrizi M, Paranjape M. On Hillocks Generated During Anisotropic Etching of Si in TMAH. IEEE J. Microelectromech. Syst. 1996; 5: 106-116.

Zubel I, Barycka I, Kotowska K, Kramkowska M. Silicon anisotropic etching in alkaline solution IV: The effect of organic and inorganic agents on silicon anisotropic etching process. Sensors and Actuators A. 2001; 87: 163-171.

Zubel I. Anisotropic etching of Si. J. Micromech. Microeng. 2019; 29: 093002.

Shen J, Chen Y, Zhang F, Zhang D, Gan Y. Morphological and crystallographic evolution of patterned silicon substrate etched in TMAH solutions. Applied Surface Science. 2019; 496: 143720.

Trieu HK, Mokwa W. A generalized model describing corner undercutting by the experimental analysis of TMAH/IPA. J. Micromech. Microeng. 1998; 8: 80-83.

Sarro PM, Brida D, Vlist W vd, Brida S. Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions. Sensors and Actuators A. 2000; 85: 340-345.

Smiljanić MM, Jović V, Lazić Ž. Maskless convex corner compensation technique on a (1 0 0) silicon substrate in a 25 wt. % TMAH water solution. J. Micromech. Microeng. 2012; 22: 115011.

Smiljanić MM, Radjenović B, Radmilović-Radjenović M, Lazić Ž, Jović V. Simulation and experimental study of maskless convex corner compensation in TMAH water solution. J. Micromech. Microeng. 2014; 24: 115003.

Pal P, Sato K, Gosalvez MA, Shikida M. Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J. Micromech. Microeng. 2007; 17: 2299–2307.

Smiljanić MM, Radjenović B, Radmilović-Radjenović M, Lazić Ž, Jović V. Evolution of Si crystallographic planes-etching of square and circle patterns in 25 wt % TMAH. Micromachines 2019; 10(2): 102.

Smiljanić MM, Lazić Ž, Radjenović B, Radmilović-Radjenović M, Jović V, Rašljić M, Cvetanović Zobenica K, Filipović A. Etched Parallelogram Patterns with Sides Along <100> and Directions in 25 wt % TMAH. In: Proc. 6th Conf. IcETRAN, Srebrno jezero, Serbia, Jun. 3–6. 2019.

Smiljanić MM, Lazić Ž, Jović V, Radjenović B, Radmilović-Radjenović M. Etching of Uncompensated Convex Corners with Sides along and <100> in 25 wt% TMAH at 80 °C. Micromachines 2020; 11(3): 253.

Powell O, Harrison HB. Anisotropic etching of {100} and {110} planes in (100) silicon. J Micromech. Microeng. 2001; 11: 217-220.

Mukhiya R, Bagolini A, Margesin B, Zen M and Kal S 2006 <100> bar corner compensation for CMOS compatible anisotropic TMAH etching. J. Micromech. Microeng. 16 2458-2462.

Bagolini A, Faes A, Decarli M. Influence of Etching Potential on Convex Corner Anisotropic Etching in TMAH Solution. IEEE J. Microelectromech. Syst. 2010; 19: 1254-1259.

Mukhiya R, Bagolini A, Bhattacharyya TK, Lorenzelli L, Zen M. Experimental study and analysis of corner compensation structures for CMOS compatible bulk micromachining using 25 wt% TMAH. Microelectronics Journal 2011; 42:127-134.

Merlos A, Acero M C, Bao M H, Bausells J, Esteve J. A study of the undercutting characteristics in the TMAH-IPA system. J. Micromech. Microeng. 1992; 2: 181-183.

Merlos A, Acero M C, Bao MH, Bausells J, Esteve J. TMAH/IPA anisotropic etching characteristics. Sensors and Actuators A. 1993; 37-38: 737-743.

Pal P, Sato K, Shikida M, Gosalvez MA. Study of corner compensating structures and fabrication of various shape of MEMS structures in pure and surfactant added TMAH. Sensors and Actuators A. 2009; 154: 192-203.

Pal P, Sato K, Chandra S. Fabrication techniques of convex corners in a (100)-silicon wafer using bulk micromachining: a review. J. Micromech. Microeng. 2007; 17: R111-R133.

Osher S, Sethian JA, Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comp. Phys. 1988; 79: 12-49.

Radjenović B, Radmilović-Radjenović M, Mitrić M. Non-convex Hamiltonians in 3D level set simulations of the wet etching of silicon. Appl. Phys. Lett. 2006; 89: 213102.

Radjenović B, Radmilović-Radjenović M, Mitrić M. Level set approach to anisotropic wet etching of silicon. Sensors 2010; 10 (5): 4950-4967.

Bernacka-Wojcik I, Ribiero S, Wojcik PJ, Alves PU, Busani T, Fortunato E, Viana Baptista P, Covas JA, Águas H, Hilliou L, Martins R. Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length. RSC Advances. 2014; 4: 56013-56025.

Alves PU, Vinhas R, Fernandes AR, Birol SZ, Trabzon L, Bernacka-Wojcik I, Igreja R, Lopes P, Viana Baptista P, Águas, H, Fortunato E, Martins R. Multifunctional microfluidic chip for optical nanoprobe based RNA detection – application to Chronic Myeloid Leukemia. Scientific Reports. 2018; 8:381.

Bhagat AAS, Peterson ETK, Papautsky I. A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J. Micromech. Microeng. 2007; 17: 1017-1024.

Wang H, Iovenitti P, Harvey E, Masood S. Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater. Struct. 2002; 11:662-667.

Wang CT, Hu YC. Mixing of liquids using obstacles in Y-type microchannels. Tamkang Journal of Science and Engineering. 2010; 13: 385-394.

Jeon W, Burm Shin C. Design and simulation of passive mixing in microfluidic systems with geometric variation. Chemical Engineering Journal. 2009; 152: 575-582.

McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle separation: a review. Lab on a chip. 2014; 4: 4139.

Zhang Z, Chien W, Henry E, Fedosov DA, Gompper G. Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells. Physical Review Fluids. 2019; 4: 024201.

Guo Q, Duffy SP, Matthews K, Islamzada E, Ma H. Deformability based cell sorting using microfluidic ratchets enabling phenotypic separation of leukocytes directly from whole blood. Scientific Reports. 2017; 7: 6627.

Jiang J, Zhao H, Shu W, Tian J, Huang Y, Song Y, Wang R, Li E, Slamon D, Hou D, Du X, Zhang L, Chen Y, Wang Q. An integrated microfluidic devices for rapid and high-sensitivity analysis of circulating tumor cells. Scientific Reports. 2017; 7: 42612.

Lykov K, Nematbakhsh Y, Shang M, Lim CT, Pivkin IV. Probing eukaryotic cell mechanics via mesoscopic simulations. PLoS Comput Biol. 2017; 3(9).

Jović V, Popović M, Lamovec J. Preciznost anizotropnog hemijskog nagrizanja.; In: Proc. 52nd Conf. ETRAN, Palić, June 8-12, 2008, MO2.6-1-4.

Open source, multi-platform data analysis and visualization application software http://www.paraview.org/

Mihailović M, Rops CM, Hao J, Mele L, Creemer JF, Sarro PM. MEMS silicon-based micro-evaporator. J. Micromech. Microeng. 2011; 21: 075007.

Roh C, Lee J, Kang CK. Physical Properties of PDMS (Polydimethylsiloxane) Microfluidic Devices on Fluid Behaviors: Various Diameters and Shapes of Periodically-Embedded Microstructures. Materials 2016; 9: 836.

Kang CK, Roh C, Overfelt R A. Pressure-driven deformation with soft polydimethylsiloxane (PDMS) by a regular syringe pump: challenge to the classical fluid dynamics by comparison of experimental and theoretical results. RSC Advances 2013; 4: 3102-3112.

Merkel T C, Bondar V I, Nagai K, Freeman B D, Pinnau I Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) Polymer Physics 2000; 38: 415-434