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Abstract 

Fossil fuel depletion and soil and water pollution gave impetus to the development of a novel 
perspective of sustainable development. In addition to the use of plant biomass for ethanol 
production, plants can be used to reduce the concentration of heavy metals in soil and water. 
Due to tolerance to high levels of metals, many plant species, crops, non–crops, medicinal, and 
pharmaceutical energy plants are well-known metal hyperaccumulators. This paper focuses on 
studies investigating the potential of Miscanthus sp., Beta vulgaris L., Saccharum sp., Ricinus 
communis L. Prosopis sp. and Arundo donax L. in heavy metal removal and biofuel production. 
Phytoremediation employing these plants showed great potential for bioaccumulation of Co, 
Cr, Cu, Al, Pb, Ni, Fe, Cd, Zn, Hg, Se, etc. This review presents the potential of lignocellulose 
plants to remove pollutants being a valuable substrate for biofuel production. Also, pretreat-
ments, dealing with toxic biomass, and biofuel production are discussed. 
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1. INTRODUCTION  

Heavy metals and metalloids present a great problem because they cannot be degraded in nature, therefore upon 

release they enter the natural biogeochemical cycles. The sources of these pollutants are the metallurgical and 

petrochemical industries, municipal landfills, wastewaters, fertilizers, pesticides, burning fossil fuels emissions, etc. The 

threat that heavy metals present causes decreased quantity and quality of crop yields and agricultural products, and 

loss of fertile soil, freshwater, and ecosystems [1]. Furthermore, problems related to energy and environmental 

protection are one of the burning issues in the 21st century [2]. Biogas/biomethane represent the future of green energy. 

The world's energy consumption should be taken into account the pollution caused by the use of fossil fuels 

accompanying the growth of total energy consumption [3]. Uncontrolled human activity, as well as energy consumption, 

has led to an increase in environmental pollution. Therefore, the use of energy plants in phyto and bioremediation could 

be a sound solution for a cleaner future [4]. Some plants have natural resistance and the ability to accumulate heavy 

metals in their tissues without symptoms of poisoning [5]. Phytoremediation is a green technology that is widely 

accepted due to its natural removal of pollutants [6]. The presence of heavy metals in the soil harms the growth and 

development of plants, as well as the loss of mineral balance, and thus the loss of yield and crop quality [7]. Increased 

interest in energy crops stems from their potential use as a carbon-neutral and environmentally friendly renewable and 

sustainable power resource [8]. Energy crops can be divided into two groups. The first group of annuals includes sweet 

and fiber sorghum, kenaf, and oilseed rape. While the second group of perennials is further classified into agricultural, 

such as wheat, sugar beet, cardun, reed, miscanthus, etc. and forest species: willows, poplars, eucalyptus, and black gras-

shopper [9]. Increased bioenergy demands, as well as a noticeable tendency towards renewable energy sources, have 

conditioned the increasing use of biomass. In line with this, sound solutions should be within the energy crops for biofuels 

and biomethane production [8], thus used in sustainable phytoremediation of metal-contaminated soils [10,11]. Short 

rotation coppice (SRC) are energy plants with a high ability to remediate heavy metals and organicpollutants. The 

advantage of using these plants is in their viability is up to 30 years before replanting [12]. 
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1. 1. Phytoremediation capacities of energy plants 

The synergy of potential energy crops in phytoremediation programs is a new direction in obtaining energy 

sustainability. It includes the creation of new bioenergy resources and the phytoremediation of contaminated land. The 

reason for the use of some energy crops is reflected in their high phytoremediation potential. These are primarily 

Miscanthus sp., Ricinus sp., Jatropha sp. and Populus sp. Furthermore, the popularization of phytoremediation has 

contributed to a better insight into the process of removing pollutants from the environment. A wide range of physical, 

chemical, and biological remediating processes such as soil washing, chemical, and physical solidification/stabilization, 

chemical oxidation or reduction, etc. are used but marked as invasive. Due to resource and financial conservation 

strategies, environmental protection strategies such as green remediation/ phytoremediation have been recognized as 

promising [13]. Therefore, it is believed that energy crops would contribute not only to energy but also to environmental 

stability [14]. Recently, heavy metal removal by energy plants has been linked to thermochemical treatments. The 

method of valorizing contaminated biomass from phytoremediation and increasing metal and energy recovery are 

gaining attention. Biochemical conversion coupled with thermal treatment enables the extraction of Hg and Cd from 

biomass before further processing. Therefore, bioenergy plants are used to remove pollution and produce biofuels [15]. 

1. 2. Prerequisites for biofuel production 

Lignocellulosic biomass (LCB) is composed of cellulose, hemicellulose, and lignin polymers, in which the ratio of the 

polymer depends on their origin [16]. Biochemical conversion of plant biomass into biofuels and biomaterials includes a 

pretreatment, via a combination of ozonolysis, alkaline, or acids, before enzymatic hydrolysis of polysaccharides into sugars 

[17,18]. After that step, sugars are converted to fuel molecules or other biomaterial molecules yeast or bacteria [19].  

2. PHYTOREMEDIATION AND BIOFUEL PRODUCTION OF ENERGY PLANTS 

2. 1. Miscanthus. sp 

2. 1. 1. Phytoremediation  

Miscanthus sp. is related to warmer regions, although one perennial species Miscanthus gigantheus can withstand 

harsh weather conditions in Central Europe [22]. Miscanthus spp is shown to be a promising genus for biofuel production 

regarding its lignocellulose content. M × giganteus, M. sacchariflorus, and M. sinensis clones were investigated by 

Arnoult et al. [23]. Miscanthus is recognized as a poor heavy metal bioaccumulation plant. However, it has 

bioaccumulation potential for Cd, Cr, Cu, Ni, Pb, and Zn. It was reported that M. sacchariflorus heavy metal oncentration 

was 10, 2, and 20 ppm for Zn, Cd, and Pb, respectively. Furthermore, M. sacchariflorus biomass production was not 

disrupted in sewage sludge with the presence of Fe, Mn, Mo, B, Ba, Sr, As, Sn, Li, and Ti [24]. This plant, in particular, 

M. × giganteus J. M. Greef & Deuter ex Hodk. & Renvoize and M. Sinensis are also known as excellent phytoremediation 

species [12, 25-27]. The phytoremediation potential of Miscanthus giganteus grown on soil contaminated with Hg and 

Cd was reflected in resistance to cadmium (45–6758 µg kg − 1), and mercury (8.7–108.9 µg kg −1). It was also found that 

in three years Miscanthus giganteus accumulated up to 293.8 µg Cd and 4.7 µg Hg per year in aboveground biomass, 

without a significant impact on biomass growth and productivity [27]. M. giganteus sequestrates inorganic pollutants 

in roots. According to Zhao et al. [26], Miscanthus sinensis is also a very suitable candidate for phytoremediation of soil 

contaminated with a high concentration of Hg (up to 706 mg kg−1 ). Positive effects of M. sinensis on the diversity and 

abundance of soil microbial community are shown, also essential for phytostabilisation and phytoextraction [26]. 

Germaine et al. [28] showed the link between microbial communities (Proteobacteria, Pseudomonas, and Acineto-

bacter) and 11 Miscanthus. sp rhizomes in organic pollutant removal. Moreover, the aboveground biomass (AGB) 

increase of Miscanthus species was related to the presence of endophyte bacterium. The presence of Pseudomonas 

koreensis AGB1 increased Miscanthus sinensis AGB by 54 %, [29]. Miscanthus sinensis compared with M. × giganteus 

showed a better ability to grow on soil contaminated with inorganic pollutants, and a high capacity for removal of 

organic pollutants. M. × giganteus showed a high ability to grow on soil contaminated with Cd, Zn, and Pb. Opposite 
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M. × giganteus, M. sinensis showed a high ability to remove organic pollutants [25]. Miscanthus genotypes: M. x gigan-

teus, M. sinensis, and M. floridulus are good candidates for Zn, Cr, and Cd removal [30]. 

2. 1. 2. Biofuel production 

Miscanthus cell wall contains 32.7 to 49.5 % cellulose, 21 to 34.8 % hemicellulose, and 17.8 to 27.7 % lignin [31]. 

According to Kricka et al. [32], Miscanthus × giganteus with 41 % cellulose content can be used in both liquid and solid 

biofuel production. In a line with this Lee and Kuan, [31], determined that Miscanthus floridulus, Miscanthus sinensis, 

Miscanthus sacchariflorus, and Miscanthus × giganteus cellulose content of 37.2, 37.6, 38.95, 41 wt.% respectively, 

0.233, 0.221, 0.213, 0.211, and 0.233 g of bioethanol, respectively. Application of 1 % NaOH at 121 °C for 60 min on 

Miscanthus ×giganteus and M. sinensis ‘Gracillimus’, resulted in 34.1 and 30.0 % glucan and 11.3 and 13.6 % xylan 

contents, respectively. Interestingly, Miscanthus x g biomass can be used for high-quality briquettes. The method 

applied was the pressure agglomeration process a hydraulic briquette machine with an open hydraulic working 

chamber. Energy potential estimation was more than 17.5 MJ kg−1 [33]. Furthermore, instead of ethanol, products of 

fermentation can be isobutanol if fermentation is performed with Clostridium sp. Compared to ethanol, isobutanol has 

a higher energy density, and low absorption of moisture from the air, therefore it is less corrosive [34-36]. As the pre-

treatment thermochemical saccharification by H2SO4 or NaOH was used. Biological saccharification and fermentation 

included two anaerobic bacteria Fibrobacter succinogenes and C. acetobutylicum. Application of 100 mol m-3 H2SO4 

resulted in 44.4 ± 8.5 g m-3 ethanol and 19.7 ± 3.5 g m-3 buthanol, while with 200 mol m-3 NaOH 39.7 ± 8.6 g m-3 ethanol 

and 4.3 ±0.33 g m-3 buthanol were produced [36]. 

2. 2. Beta vulgaris L. 

2. 2. 1. Phytoremediation 

Sugar beet (Beta vulgaris L.) is a plant whose wide genetic variation reflects adaptive morpho-physiological features 

under moderate and severe drought conditions [37] and high heavy metal presence [38,39]. Specifically, an efficient 

antioxidant system and redox signaling within some genotypes enable B. vulgaris tolerance to drought stress [37]. Beta 

vulgaris L. var. cicla. is a plant of large biomass with a short growth period and high Cd uptake and accumulation 

potential [39] Papazoglou and Fernando [38] suggest that sugar beet plants are proven to grow in soil containing 
diethylenetriamine pentaacetic acid, DTPA-extractable Cd and Ni concentrations up to 236 and 75.4 mg kg−1 

respectively, given the same biomass quality as those grown in soil without high metal concentrations. Enhanced 

extraction of Cd can be achieved by adding organic amendments such as cornstalk biochar. Biochar at the concentration 

of 5 %, decrease the DTPA-extractable Cd concentration compared to B. vulgaris grown on soil without the presence of 

biochar. Results indicate growth of about 267 % of root dry mass and an increase in Cd plant accumulation of 206 %. 

Notably, there was an increase in matter-bound Cd and residual Cd, and a decrease of Fe–Mn oxides-bound Cd of about 

40 % [39]. Furthermore, biochar increases the C / N ratio, up to 400, while a ratio of approximately 20 represents the 

threshold for N Immobilization in organic materials [40]. This species exposed to high concentrations of zinc sulfate in 

the nutrient solution (50, 100, and 300 μM) showed signs of reduction in total biomass (root and shoot) [41].  

2. 2. 2. Biofuel production 

Climate change has contributed to the setting of specific targets related to alternative renewable energy sources. 

The European Union has extended the use of energy crops such as sugar beet as raw materials to produce ethanol and 

methane. The high concentration of easily fermentable compounds has given the use of sugar beet a special place. 

Glucose fermentation is essential for ethanol production. Being placed as a part of a sugar factory, a factory for ethanol 

production, apart from glucose, uses raw or thick juice. To gain quality fuel, beetroot quality is crucial, the same as used 

in sugar production. The plant potential in biogas production is linked to the crude nutrient amount, low lignin, and the 

same amount of hemicellulose and pectin [42,43]. Sugar beetroots contain 23–24 %, dry matter from which the largest 

part is organic (easily-decomposable carbohydrates, the N-free solutes). A small part of crude fiber such as lignin does 

not exhibit potential for the ethanol production fermentation process, in contrast to sugar beet leaves that can be used 



Hem. Ind. 76(4) 209-225 (2022) M. NIKOLIĆ et al.: BIOFUEL FROM ENERGY PLANTS 

212  

as a biofuel feedstock. The enzymatic liquefaction (pectinase and cellulase enzymes) was used for increased fermentable 

sugar recovery [44-46]. Surprisingly, investigation of sugar concentration in different species varieties to methane 

production to only dry matter importance, not sugar concentration. One report regarding this plant goes into reducing 

greenhouse effects with biofuel production. Carbon Intensity (CI) is used to measure all greenhouse gas emissions 

associated with the life cycle assessment (LCA) of a fuel. Additionally, CI sugar beet ethanol was 28.5 g CO2e/ MJEtOH 

(Carbon Dioxide Equivalent/Conversion rates (Efficiencies)). This study presents an energy analysis of sugar beet-based 

ethanol production and CO2 emissions [47]. The current production of table sugar or sucrose amounts to 160 million 

tons of sugar per year [48]. Sugar beet sucrose content was conditioned, therefore enabling the production of 100 to 

120 L ethanol per t of sugar beet or approximately 5000 L/ha in mild climates [47-48].  

2. 3. Saccharum sp. 

2. 3. 1. Phytoremediation 

According to the US Department of Agriculture Saccharum sp. contains thirteen species [49]. Sugarcane (Saccharum 

officinarum L.) is a recognized phytoremediation plant due to its biomass abundance, fast growth, and moderate uptake 

and accumulation of heavy metals such as Cu, Cd, Se, Pb, and Mn [50-52]. The Saccharum officinarum L. plant was found 

to be a good phytoremediator of lindane-rich garden soil, with degraded 600 mg L-1 of lindane. The efficiency of 

sugarcane was enhanced by root-inoculation with yeast Candida VITJzN04 because yeast produces growth hormone 

and solubilizes insoluble phosphates [53]. Therefore, the lindane-removal rates by sugarcane baggase bio-stimulated 

with yeast has the shortest t1/2 (half-life period) for lindane degradation 7.1 days, compared with 13.3 days (yeast), 43.3 

days (Saccharum) [53]. Furthermore, Saccharum officinarum L. is also used in fluoride (F⁻), and bioaccumulation. The 

Sugarcane potential was estimated at 1000–1200 mg F⁻ kg−1 dry weight [55]. Furthermore, Saccharum officinarum L. 

was also able to remove fluoride from an aqueous environment [56].  

The root zones of S. officinarum were amended with Aspergilus flavus, Paecilomyces sp., Mucor sp., Penicillium sp., 

and Trihoderma viride efficiently degraded petroleum hydrocarbon from crude oil contamination [57]. Also, S. 

officinarum growth and development are influenced by the Fe soil content. Therefore, a study regarding the Fe 

accumulation potential of a plant showed that the addition of Fe-EDDHA (the chelate ferric-ethylenediamine-N, N′-bis(2-

hydroxyphenyl acetic acid) increased accumulation of Fe [58]. Sugarcane exposure to copper-based compounds/nano-

materials showed good bioaccumulation potential. The performed studies indicate an increased rate of Cu 

bioaccumulation. Translocation of Cu from the roots to the aerial parts enhanced to some extent with copper level. 

Therefore, an increase in the bioavailability of Cu in the soil treated with higher Cu levels could be a probable reason for 

that phenomenon [59]. Increased uptake of polychlorinated biphenyls (PCBs) and cadmium by Saccharum officinarum L. 

was achieved by adding tea saponin. Application of 0.01 % saponin significantly increased the uptake of PCB, while 0.3 % 

tea saponin assisted in increasing the uptake of Cd in roots, stems, and leaves by 96.9, 156.8, and 30.1 %, respecti-

vely [60]. In partially consolidated bioprocessing, which involved enzymes laccase (Pleurotus djamor) and holocellulase 

(Trichoderma reseei RUT C30), Saccharum spontaneum L. and Saccharum spontaneum biomass has been transformed 

into 62 g dm-3 ethanol. 

Saccharum spontaneum L. known as wild sugarcane or kans grass showed apart from the ability to grow on heavy 

metal polluted sites, great efficiency to clean fly ash dumps, acid mine dumps, and sewage sludge [61,62]. S. spontaneum 

the rhizosphere amended with phosphate-solubilizing bacteria Bacillus anthracis strain MHR2, Staphylococcus sp. strain 

MHR3, and Bacillus sp. strain MHR4 showed potential in heavy metal removal from dumpsites [63]. The accumulation 

of Cu, Sn, and Pb/Zn are due to the adaptability of the plant to tailing environments. Exposure to different concen-

trations of Pb in soil (0, 100, 250, 500, and 1000 mg kg-1) did not induce macro-toxicity in plants except for the highest 

Pb concentration used. Also, a greater amount of Pb was found in roots compared to shoots [64]. Saccharum munja L., 

a plant of the same genus, can grow on metal-contaminated coal fly ash dumps and exhibits a high capacity for heavy 

metal removal. Biological accumulation coefficient/factor (BAC) was defined as the concentration of heavy metals in 

plant shoots divided by the heavy metal concentration in soil [BAC = cMetal in plant shoot /cMetal in soil] and indicates the ability 

of plants to tolerate and accumulate heavy metals. In Zn, Pb, Cu, Ni, Cd, and As removal by S. spontaneum, 
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bioaccumulation factors were 8.01, 1.40, 3.02, 0.92, 1.66, and 1.47 mg dm−3, respectively. S. munja bioaccumulation 

factors were higher indicating better perspectives in using this plant, amounting to 8.54, 1.66, 3.24, 0.76, 1.63, and 

1.41 mg dm−3, respectively [65]. Furthermore, Saccharum arundinaceum (Retz.) is used for cleaning the soil from heavy 

metal contamination around mining areas, farmland, etc. A mitigating circumstance in this process is the presence of 

sulfuric acid as a result of acid mine drainage when the mining activities expose sulfur-bearing minerals to atmospheric 

oxygen, moisture, etc. Thus, S. arundinaceum had the advantages of accumulating metals Cu, Zn, Pb, and Cd, with the 

emphasis on Cu because of the presence of strong acid in the mining soil environment [66].  

2. 3. 2 Biofuel production 

In a study by Kataria and Ghosh [71], S. spontaneous was pretreated with cellulolytic enzyme from Trichoderma reesei, 

followed by bioconversion to bioethanol performed with Saccharomyces cerevisiae. The total estimated bioethanol 

production was 0.46 g g-1. Also, Saccharum spontaneum saccharification with A. oryzae enzymes with subsequent 

fermentation with Pichia stipitis NCIM3498 resulted in 0.38 g g-1 bioethanol production [72]. Saccharum arundinaceum 

subjected to simultaneous treatment with 3 enzymes (laccase, cellulase, and β-glucosidase) showed a great saccha-

rification outcome of 205 ± 3.73 mg g-1 total reducing sugar, with the final ethanol concentration of 4.18 ± 1.14 g dm-3 [73].  

2. 4. Ricinus communis L. 

2. 4. 1. Phytoremediation 

Ricinus communis L., commonly termed Castor, is well known for its ability to grow under harsh conditions. These 

include floods, extreme pH, high temperature, high salt content, harmful microorganisms, fungi, nematodes, and insects 

as well as smog, and SO2 [75,76]. This plant with high oil content is not only considered an energy crop but also good 

wastelands remediator because of its high biomass productivity, comparable to Brassica juncea [77,78], as well as high 

antioxidant content and heavy metal bioaccumulation capacity [79]. Both stem and leaf flavonoid content enables good 

antioxidant activity [80]. Ricinus communis L. was shown in different studies to exhibit the potential to remove Cd [77], 

Ni, Zn, Fe [78], and Pb [81], and to tolerate Cu, Fe, Mn, and Zn [82,83]. Furthermore, R.communis removes organic 

contaminants like pesticides [84]. At places like different types of Cu-mine soils and slags rich in Cu, As, Fe, and Zn, 

Castor showed good bioaccumulation capacity [85]. Also, mine tailings are sources of a wide range of heavy metals (Cu, 

Zn, Mn, Pb, and Cd) [86]. Furthermore, Castor successfully removed Pb, Cd, and Zn at more than 70 %, and reduced 

BOD, and COD values in wastewater [87]  

2. 4. 2 Biofuel production 

Ricinus communis L. is a highly valuable plant for biofuel production [87]. The biomass carbon content is between 

40 and 43 %, which nominates this plant for biogas production [88]. According to Sharma et al. [89], pretreatment of 

lignocellulosic substrates by the Dattas method enhances biogas (methane) production. For untreated and treated 

R. communis the maximum yield biogas production was 86.6 and 120.9 l kg-1 respectively, and methane content was 

44.2 and 50.9 % respectively. Greenhouse gas (GHG) emission using compressed natural gas (CNG) as a primary fuel and 

castor (Ricinus communis) oil methyl ester (COME) was evaluated in a study by Mahla and Dhir, [90]. The study aimed 

to show GHG release using various blends (B10 and B20), where B20 fuel is a blend of 20 % biodiesel and 80 % 

conventional diesel, and B10 fuel is a blend of 10 % biodiesel and 90 % conventional diesel. Research showed increased 

NOx and HC emissions, whereas CO emissions decreased by 31.6 and 37.4 % for B20-CNG and D-CNG. Also, this is a plant 

rich in cellulose (50 %) and hemicellulose (17 %) [89], thus promising for the use in production of biodiesel by 

transesterification of castor oil, shown to be up to 91 % [91]. R. communis biodiesel properties resemble that of diesel. 

Umale et al. [92] compared GHG emissions using B20 and B10 castor biodiesel blends used in the engine at compression 

ratios (CR) of 16.5 and 17.5, respectively. The aim of the study was also to determine how efficiently the engine converts 

fuel supplied into useful work via brake-specific fuel consumption (BSFC). Results showed that the B20 castor biodiesel 

blend used in the engine at CR 16.5 showed lower BSFC than the B10 castor biodiesel blend and vice versa at CR 17.5. 

One more indicator is the brake thermal efficiency, which measures the efficiency of internal combustion engines. The 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/organic-contaminant
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/organic-contaminant
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higher the brake thermal efficiency, the lower the fuel consumption, and greenhouse gas emissions. And in this study, 

both B10 and B20 had higher break thermal effects. Both blends were used in the engine at CR 17.5. Also, used B10 

showed lower CO and HC emissions, and comparatively higher NOX emissions, while B 20 showed lower NOX, and 

comparatively higher CO and HC emissions [92]. 

2. 5. Prosopis sp 

2. 5. 1. Phytoremediation 

Prosopis juliflora (Sw.) DC, also known as Velvet Mesquite or simply Prosopis. Prosopis spp similar to Ricinus 

communis L. can tolerate and grow in arid, alkaline pH, and, saline soil, and extreme temperatures [92]. This plant is 

recognized to have a high ability to grow on different soil exhibiting high phytoremediation potential. Having the ability 

to tolerate high amounts of heavy metals, P. juliflora grows on the soil containing Cd, Co, Cr, Fe, Mn, Ni, Pb, and Zn up 

to 26, 22, 2243, 137, 9.4, 34, 18 and 14 mg kg−1, respectively [93]. One of the biggest concerns in environmental 

protection is fluorosis, related to air pollution, caused by coal burning, and fluoride (F) related to soil contamination. 

However, it is found that P. juliflora has also the potential for tolerance and accumulation of F, yielding 4.41 mg kg−1 dw 

in the stem, 12.97 mg kg−1 dw in leaves, and 16.75 mg kg−1 dw in roots [94]. Also, it was shown that the presence of iron 

oxide nanoparticles (Fe3O4 NPs) enhanced the phytoremediation potential of this plant of F [95]. Ramírez et al. [93], 

investigated the potential of Prosopis laevigata for heavy metal phytoremediation in soils polluted with a high 

concentration of aluminum, titanium, chromium, and zirconium up to 4.1, 14, 1.6 and 2.5 g kg-1, respectively. However, 

at a high concentration of Cr of 435 mg kg-1 in the soil a lack of phytoremediation potential was observed. This study 

revealed that P. laevigata inoculated with Bacillus sp. showed the ability to bioaccumulate chromium Cr [93].  

2. 5. 2. Biofuel production 

Prosopis juliflora (Sw.) DC is rich in holocellulose (60 – 65 %), therefore, it is considered for bioethanol production 

[80,97-99]. In such a study, Sivarathnakumar et al [99] used Kluyveromyces marxianus leading to the increased sugar 

content by applying auto-hydrolysis with acid hydrolysis as a pre-treatment. Saccharification and fermentation 

processes resulted in 21.45 g dm-3 of bioethanol, produced from product and biomass yields of 0.67 and 0.28 wt.%, 

respectively [99].  

Pasha et al. [100], investigated the same process using a thermotolerant Saccharomyces cerevisiae VS3 strain. As a 

pre-treatment strong acid and enzyme hydrolysis was applied. In this process, 80.76 % of biomass yield was converted 

into 84 g dm-3 total carbohydrates. To improve the fermentative efficiency of sugar to bioethanol production ethyl 

acetate extraction was employed. With 88% efficiency, S. cerevisiae enabled 30.0 g dm-3 ethanol production of 

0.431±0.021 g ethanol per g sugar of utilized sugars. Thus, efficient pre-treatment induces greater production of bio-

ethanol. There are some suggestions that a combination of ionic liquid (IL)-based pretreatment with pretreatment 

agents surfactants/salts/deep eutectic solvent [101], can be successful [102]. Ionic liquids can remove hemicellulose 

and lignin to some extent, also has a role in decreasing the surface tension between the two liquid phases during 

pretreatment and have an additive effect. Surfactant pretreatment with dodecyl benzene sulfonic acid, or dilute acid 

pretreatment improves lignin solubility, reduce unproductive binding to the enzyme, modifying the biomass surface. 

Then, pretreated biomass should be further enzymatically saccharified with cellulose or xylanase [103].  

Investigating sources of important robust enzymes Vaid et al [102], reported that Bacillus spp, in particular, 

B. amyloliquefaciens SV29 has the potential of secreting IL-stable enzymes. Furthermore, saccharification of Prosopis 

juliflora with xylanase released from B. pumilus strain MK001 resulted in 15.5 wt. %of sugars and reached 20.0 % 

saccharification efficiency. Further fermentation process with Pichia stiptis had a release of saccharified hydrolysates 

and an outcome of 0.36 wt.% ethanol yield [104]. Besides P. juliflora, P. pallid is also considered for bioethanol 

production, whereas sugar (40 %) can be converted into 18.9 % ethanol [105]. The production of bioethanol depends 

on the type of microorganisms. Therefore, da Silva et al. [97] investigated the efficiency of two microorganisms 

Zymomonas mobilis and Saccharomyces cerevisiae in ethanol synthesis. By cultivating Z. mobilis in P. juliflora pods after 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/iron-oxides
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/iron-oxides
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/kluyveromyces-marxianus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzymatic-hydrolysis
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36 h in static conditions the highest concentration of ethanol was reached (141.1 g dm-3), While under the same 

conditions, after applying S. cerevisiae the highest ethanol production (44.32 g dm -3) was achieved after 18 h [97].  

2. 6. Arundo donax L. 

2. 6. 1. Phytoremediation 

Arundo donax L., commonly termed “giant cane” or “giant reed”, is a non-food crop adapted to different kinds of 

environments. The phytoremediation potential of this plant in As removal has been estimated in a study conducted by 

Mirza et al. [106]. Cultivated in different hydroponics conditions with increasing doses of As (0, 50, 100, 300, 600, and 

1000 μg dm-3), A. donax showed the ability to accumulate up to 600 μg dm-3 [106], and good bioaccumulation potential in 

Zn, Cr, and Pb removal from the growing medium. In the range of 450 and 900 mg Zn kg−1, 300 and 600 mg Cr kg−1, and 450 

and 900 mg Pb kg−1, A. donax biomass slightly decreased, but a severe reduction was noticed at 600 mg Cr kg−1 [1]. Soil rich 

in Ni did not cause any decrease in the growth and development of A. donax. High content of Ni was found in shoots, 

indicating a good hyperaccumulation ability [107]. A. donax amended with Trichoderma harzianum, Saccharomyces 

cerevisiae, and Wickerhamomyces anomalous was individually exposed to two different concentrations of Ni, Cd, Cu, As, 

Zn, Pb, V, and Hg. A. donax and mycorrhized A. donax with T. harzianum stand out as Cd, Pb, and Hg bioaccumulators. The 

mean bioaccumulation percentage values were for Hg 0.60 %, for Pb 0.54 % and for Cd 0.42 % [108]. Furthermore, A. donax 

was exposed to different Cd concentrations of (0, 50, 100, 250, 500, 750, and 1000 g dm−3), in a hydroponic and soil 

environment. Although better performance was observed in hydroponic conditions A. donax is considered a Cd 

hyperaccumulator [109]. Additionally, grown in non-ferrous soil giant reed showed high phytoremediation potential for Cd 

and Pb removal [110]. Also, broad tolerance of A. donax to Cd, Cr, Cu, Ni, and Pb was shown in literature reporting the 

tolerance values of 0.5 mM, 0.2 mM, 2 mM, 0.5 mM, and 1 mM, respectively [111]. Also, a comparison between 

accumulating capabilities regarding some heavy metals showed that A. donax accumulates Zn > Ni > Cu > Cd [112]. 

According to Alshaal et al. [113], A. donax is strongly recommended for phytoremediation of bauxite residue or red mud 

being capable to accumulate and translocate heavy metals, especially Ni, but also Co, Pb, Cd, and Fe [113], As and Hg [114], 

Se [115], nitrate [116], Cu [117,118]. 

2. 6. 2. Biofuel production 

Multi-applicable A. donax has found a place among high biomass yield energy plants, suitable for biofuel production 

[119-121]. Giant cane rich in cellulose is considered a good bioethanol source with pre-treatment to degrade cellulose 

into fermentable sugars [122]. De Bari et al. [119] used the steam explosion as pre-treatment and then pretreated 

biomass was exposed to saccharification and fermentation. After these steps, high gravity hydrolysis was applied with 

subsequent fermentation using S. cerevisiae to reach the production of ethanol concentration of 51 g dm-3. A. donax 

pretreated with commercial cellulase (Multifect®) from Trichoderma reesei, produced 75 dm3 of ethanol per ton of 

Arundo biomass [125]. Another study suggested that plants were able to produce 20 g dm-3 oxalic acid [126] and 8.2 g 

dm-3 ethanol [127]. Giant reed biomass pre-treated with diluted acid or liquid hot water can be converted with bacteria 

as a fermentative organism. Locaes et al. showed that the usage of commercial enzymes boosts ethanol production 

from 0.44 to 0.47 g dm-3. Also, this study showed a great difference when ethanol production was carried out without 

saccharification, resulting in 7.5 g dm-3 of ethanol [129].  

3. DISCUSSION 

Recently, fossil fuel depletion brought alternative energy sources to become the “new normal" energy sources. 

Furthermore, energy stability is on the same level of importance as the elimination of environmental pollution. Recent 

studies indicate multitasking approach as phytoremediation and biofuel production from the same source - energy 

plants. There are a plethora of energy crops and non-crops used for this purpose. Structural properties and physiology 

enable these plants to clean up soil from heavy metals and then use it for biofuel production. The candidates and 

multiple potential plant species are presented in Table1. and Table 2.  
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Table 1. The bioaccumulating potential of energy plant species  

Plant species Bioaccumulation potential References 

Miscanthus × giganteus J.M. Greef & 
Deuterex Hodk. & Renvoize 

Hg, Cd, Zn, Pb, Cu, Mn, Ti, As, Fe and Zr [24-30] 

Miscanthus sinensis Hg, Cd, Zn, Cr [26,30] 

Miscanthus sacchariflorus Zn, Cd, Pb, Fe, Mn, Mo, B, Ba, Sr, As, Sn, Li, and Ti [24,30] 

Miscanthus floridulus Zn, Cr and Cd [30] 

Beta vulgaris L. Cd [39] 

Beta vulgaris L. DTPA-extractable Cd and Ni [38] 

Saccharum officinarum L. Cu, Cd, Se, Pb, and Mn [50-52] 

Saccharum officinarum L. gamma-HCH or lindane [53,54] 

Saccharum officinarum L. F⁻ [56] 

Saccharum officinarum L. Fe [59] 

Saccharum officinarum L. PCBs and Cd [60] 

Saccharum spontaneum L. Cu, Sn, and Pb/Zn [11,64] 

Saccharum munja Zn, Pb, Cu, Ni, Cd, and As [65] 

Saccharum.arundinaceum Cu, Zn, Pb, and Cd [66] 

Ricinus communis L. Cd [77,84] 

Ricinus communis L. Ni, Zn, and Fe [78] 

Ricinus communis L. Pb [81] 

Ricinus communis L. B, and tolerate Cu, Fe, Mn, and Zn [82,83] 

Ricinus communis L. Cd, Pb, Ni, As, Cu [84] 

Ricinus communis L. Pesticides [84] 

Prosopis juliflora (Sw.) DC Cd, Co, Cr, Fe, Mn, Ni, Pb, and Zn [94] 

Prosopis juliflora (Sw.) DC fluoride (F) [95] 

P. laevigata Al, Fe, Ti, and Zn [93] 

P. laevigata inoculated with Bacillus sp. Cr [93] 

Arundo donax L. As [106] 

Arundo donax L. Zn, Cr, and Pb [1] 

Arundo donax L. Ni, Cd, Cu, As, Zn, Pb, V, Hg. [108] 

Arundo donax L. Cd [110] 

Arundo donax L. Cd, Cr, Cu, Ni, and Pb [111,117,118] 

Arundo donax L. Ni, Co, Pb, Cd, and Fe [113] 

Arundo donax L. As and Hg [114] 

Arundo donax L. Se [115] 

Arundo donax L. Nnitrates [116] 

 

As presented, there is a strong bioaccumulation potential in all selected plants. Silvergrass plants are recognized as 

heavy metal bio accumulators. Miscanthus × giganteus J.M. Greef & Deuter ex Hodk. & Renvoize, chiefly removes Hg, 

Cd, Zn, and Pb, Cu, Mn, Ti, As, Fe, and Zr, and Miscanthus sacchariflorus besides Zn, Cd, Pb, Fe, removes Mn, Mo, B, Ba, 

Sr, As, Sn, Li, and Ti. Moreover, this plant gave good results in bioethanol production. Miscanthus × giganteus J.M. Greef 

& Deuter, ex Hodk. & Renvoize under biological saccharification and fermentation with anaerobic bacteria F. 

succinogenes and C. acetobutylicum yielded 44.4 ± 8.5 g m-3 ethanol and 19.7 ± 3.5 g m-3buthanol. Sugar beet, Beta 

vulgaris L. is suitable for Cd, DTPA-extractable cadmium, and Ni removal. An excellent result was achieved with 

enzymatic liquefaction (pectinase and cellulase enzymes) to produce 100-120 dm-3 ethanol/sugar beet. 
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Table 2. Biofuel production from energy plants 

Plant species Pretreatment/ Treatment applied Biofuel produced Ref. 

Miscanthus × giganteus J.M. 
Greef & Deuter ex Hodk. & 
Renvoize 

100 mol m-3 H2SO4 

9572 g m-3 saccharides from 
acid treatment yielded 

44.4 ± 8.5 g m-3 of ethanol  
19.7 ± 3.5 g m-3 of buthanol 

[36,37] 

Miscanthus × giganteus J.M. 
Greef & Deuter ex Hodk. & 
Renvoize 

200 mol m -3 NaOH 

4054 g m-3 saccharides from 
alkali treatment yielded 

39.7 ± 8.6 g m-3 of ethanol  
4.3 ± 0.33 g m-3 of buthanol 

[36,37] 

Miscanthus × giganteus J.M. 
Greef & Deuter ex Hodk. & 
Renvoize 

Biological saccharification and fermentation 
with anaerobic bacteria F. succinogenes and 

C. acetobutylicum 

2504 g m-3 saccharides 
yielded 0.091 g m-3 of 

ethanol 

[36,37] 

Miscanthus sinensis 1 % NaOH at 121 °C for 60 min/ozonolysis 

From 37.6 wt.% of 
cellulose, 0.221 g of 

ethanol was produced 

[31] 

Miscanthus sacchariflorus 1 % NaOH at 121 °C for 60 min/ozonolysis 

From 38.95 wt.% of 
cellulose, 0.213 g ethanol 

was produced 

[31] 

Miscanthus floridulus 1 % NaOH at 121 °C for 60 min/ozonolysis 

From 41 wt.% of cellulose, 
0.233 g ethanol was 

produced 

[31] 

Beta vulgaris L. 
Enzymatic liquefaction (pectinase and 

cellulase enzymes) 
103.5 dm3 per tonne  

(wet weight) 
[47-48] 

Beta vulgaris L. 
Enzymatic liquefaction (pectinase and 

cellulase enzymes) 

Enhanced bioethanol 
production-from 10 wt.% 

fermented sugars 

[47-48] 

Saccharum officinarum L. Steam pretreatment with SO2 and H2O2 
Bioethanol 0.95 g dm -3 

(ethyl alcohol) 
[67,68] 

Saccharum officinarum L. 
Saccharification, fermentation, and 

rectification 
10.9 g dm-3 ethanol [69] 

Saccharum officinarum L. 
S. cerevisiae, P. stipitis and 

oxalic acid (2-8 wt.%). 
7.9 g dm-3 butanol [67,70] 

Saccharum officinarum L. 
Dilute acid, then fermented with Clostridium 

beijerinckii DSM 6423 
62 g dm-3 ethanol [74] 

Saccharum officinarum L. 
Partially consolidated bioprocessing (PCBP) / 
laccase (Pleurotus djamor) and holocellulase 

(Trichoderma reseei RUT C30), 

0.46 g g-1  
bioethanol / biomass 

[131] 

Saccharum spontaneum L. 
The cellulolytic enzyme (CMCase) from 
Trichoderma reesei / bioconversion in 

bioethanol with Saccharomyces cerevisiae 

21.82 ± 0.15 g L-1  
hydrolysate /  

0.40 ± 0.01 g g -1 ethanol 

[71] 

Saccharum spontaneum L. 
A. oryzae enzymes and then fermented with 

Pichia stipitis NCIM3498 
62 g dm-3 ethanol [72] 

Saccharum spontaneum L. 
Partially consolidated bioprocessing (PCBP) / 
laccase (Pleurotus djamor) and holocellulase 

(Trichoderma reseei RUT C30) 

30.78 g dm-3 and 31.56 g 
dm-3 of bioethanol 

[131] 

https://www.sciencedirect.com/topics/engineering/bioethanol
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Plant species Pretreatment/ Treatment applied Biofuel produced Ref. 

Saccharum munja  
Enzymatic hydrolysate fermented by the co-
culture Saccharomyces cerevisiae and Pichia 

stipitis 
4.18 ± 1.14 g dm-3 ethanol [67] 

Saccharum.arundinaceum 
Co-immobilized tri-enzyme biocatalytic 

system for one-pot pretreatment (Laccase, 
cellulas and β-glucosidase) 

biodiesel [73] 

Ricinus communis L 

Pre-treatment (Heating of oil and 
esterification); main treatment 
(Transesterification ) + catalyst 

(acid / alkaline) 

99.07 % of biodiesel 
(methyl ester) yield 

[92] 

Ricinus communis L 
Esterification-neutralization-

transesterification (ENT) process 
21.45 g dm-3 of bioethanol [130] 

Prosopis juliflora (Sw.) DC 
Auto-hydrolysis with acid-hydrolysis, 
Kluyveromyces marxianus enzymes 

30.0 g dm-3 of bioethanol [99] 

Prosopis juliflora (Sw.) DC 
Strong acid and enzyme hydrolysis, 

Saccharomyces cerevisiae 
36 wt.% ethanol yield [100] 

Prosopis juliflora (Sw.) DC 
Ionic liquid based pretreatment, Pichia 

stiptis release of saccharified hydrolysates 
141.1 g dm-3 [104] 

Prosopis juliflora (Sw.) DC Zymomonas mobilis enzymes 51 g dm-3 bioethanol [97] 

Arundo donax L. 
Steam explosion as pre-treatment than  

S. cerevisiae amendment saccharification 
and fermentation 

4.8 g dm-3 bioethanol [119] 

Arundo donax L. 
pretreatment by 2 vol.% of H2SO4, followed 

by enzyme hydrolysis by Zymomonas 
mobilis 

8.20 g dm−3 of ethanol [123] 

Arundo donax L. 
Dilute oxalic acid as a pretreatment, 

Scheffersomyces (Pichia) stipitis CBS6054 
enzyme hydrolysis 

75 dm-3 ethanol per t of 
biomass 

[124] 

Arundo donax L. 
Commercial cellulase (Multifect®) from 

Trichoderma reesei 
19.8 g dm-3 ethanol [125] 

Arundo donax L. Dilute oxalic acid 7.5 g dm-3 ethanol [126,127] 

Arundo donax L. Enzymatic hydrolysis of cellulose Ethanol [128] 

Arundo donax L. 
Pre-treated with diluted acid or liquid hot 

water, Escherichia coli amendment 

9572 g m-3 saccharides from 
acid treatment yielded 

44.4 ± 8.5 g m-3 of ethanol  
19.7 ± 3.5 g m-3 of buthanol 

[129] 

Arundo donax L. 

Process of sonication, aqueous solution 
amended with copper (CuSO4.5H2O or 
CuH10O9S), manganese (MnSO4·H2O or 

H2MnO5S), and zinc (ZnSO4·7H2O or 
H14O11SZn) ions, T. koningii and A. niger 

4054 g m-3 saccharides from 
alkali treatment yielded 

39.7 ± 8.6 g m-3 of ethanol  
4.3 ± 0.33 g m-3 of buthanol 

[122] 

 

Furthermore, besides the already mentioned heavy metals, gamma-HCH or lindane, and F⁻ are bioaccumulated by 

Saccharum officinarum L. which alongside S. spontaneum L. produced 62 g dm-3 ethanol in partially consolidated 

bioprocessing (PCBP) / laccase (Pleurotus djamor) and holocellulase (Trichoderma reseei RUT C30) treatment. Prosopis 

juliflora (Sw.) DC. remediates soil from Cd, Co, Cr, Fe, Mn, Ni, Pb, Zn, and F. Bioethanol production of 141 g dm-3 is 

possible if applied Zymomonas mobilis enzymes. Arundo donax L. showed good As, Co, Cd, Cr, Cu, Fe, Ni, Se, Pb, Zn, V, 

and NO3- bioaccumulation results, and commercial cellulase (Multifect®) from Trichoderma reesei gave the best results 

https://pubchem.ncbi.nlm.nih.gov/#query=CuH10O9S
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in biofuel production, 75 dm3 of ethanol. The future relies on sustainable techniques that will provide a cleaner 

environment. In summary, there are many research papers indicating the feasibility of the phytoremediation-bioenergy 

strategy direction, where energy plants can be used to clean the environment from heavy metals and then used for 

biofuel production.  

4. CONCLUSION 

A plethora of organic and inorganic pollutants, especially heavy metals (HMs) have caused soil and water pollution. 

Moreover, these metals have genotoxic, and mutagenic effects on living beings [131]. Many plant species belonging to 

different plant families, recognized as useful phytoremediation candidates, can accumulate different pollutants without 

intoxication [132,133]. Scientists and engineers are working together to explore alternative energy sources because 

advances will allow the removal of harmful pollutants such as heavy metals while replacing fossil fuels with biofuels. 

Table 1. depicts various energy plants' roles in phytoremediation and biofuel production. All presented plant species 

have shown exceptional importance in energy stability without endangering the environment. Plant species with 

multiple potentials need to be further genetically improved and researched, particularly concerning reducing the toxic 

effect of heavy metals on subsequent biofuel production. Therefore, the compilation of these two processes has been 

recognized as a future direction for sustainable energy and environmental protection.  
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Energetske biljke kao izvor biogoriva i kao akumulatori teških metala 
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(Stručni rad) 
Izvod 

Nedostatak fosilnih goriva i zagađenje zemljišta i vode motivisali su stvaranje nove perspektive održivog 
razvoja. Ne samo da se biljna biomasa može koristiti u proizvodnji etanola, već se ista biljka može koristiti 
i za minimiziranje/eliminaciju teških metala prisutnih u zemljištu i vodi. Rezistentne na visoke 
koncentracije metala, mnoge biljne vrste, usevi, medicinske i farmaceutske energetske biljke su dobro 
poznati hiperakumulatori teških metala. Ovaj rad se fokusira na studije koje istražuju potencijal 
Miscanthus.sp, Beta vulgaris L, Saccharum sp., Ricinus communis L. Prosopis sp i Arundo donak L. u 
uklanjanju teških metala i proizvodnji biogoriva. Fitoremedijacija korišćenjem ovih biljaka pokazala je 
veliki potencijal bioakumulacije Co, Cr, Cu, Al, Pb, Ni, Fe, Cd, Zn, Hg, Se, itd. Takodje, za pretvaranje 
celuloze u fermentabilne šećere, predtretmani kao što su ozonoliza, tretman bazama ili kiselinama, 
parom ili toplom vodom, primenjeni su pre enzimske saharifikacije mikroorganizmima. Ovaj pregled 
predstavlja uvid u potencijal lignoceluloznih biljaka da uklone zagađujuće supstance i ujedno su vredan 
supstrat za proizvodnju biogoriva. Takođe, razmatrani su predtretmani, bavljenje toksičnom biomasom 
i proizvodnja biogoriva.

Ključne reči: polutanti; bioakumulacija; 
bioenergija 
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