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Abstract 

In this paper, an innovative fluidized bed dryer with inert particles is presented. The system 

can be used for drying of solutions, suspensions and pastes in order to obtain a powdered 

product. The experiments were performed in a pilot-scale dryer with a cylindrical column 

0.215 m in diameter and 1.2 mm height, with glass spheres as inert particles. The material 

used for drying was CuSO4 solution. The effects of operating conditions on the dryer 

throughput and product quality were investigated. Main performance criteria, i.e. specific 

water evaporation rate, specific heat consumption and specific air consumption, were 

quantified. Nearly isothermal conditions were found due to thorough mixing of the particles. 

The energy efficiency of the dryer was also assessed. Simple heat and mass balances 

predicted the dryer performance quite well. 
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1. INTRODUCTION 

Many processes in chemical, pharmaceutical and food processing industries involve drying of solutions, suspensions 

and pastes in order to obtain the final product in the form of powder. Various drying techniques can be used for this 

purpose, depending on the initial moisture content and physical and rheological properties of the material. In general, 

trends in drying technology are associated with achieving higher energy efficiency, enhanced drying rates, development 

of more compact dryers, better control for enhanced quality and optimal capacity, developments of multi-processing 

units (for example filter-dryer), etc. Mujumdar [1] pointed out that numerous new or improved drying technologies are 

currently at various stages of development. Over 400 dryer types have been cited in the technical literature although 

only about 50 types are commonly found in practice. The dryer selection is a complex process, which is not entirely 

scientific but also involves subjective judgment as well as considerable empiricism. It should be noted that pre-drying 

as well as post-drying stages have important influence on the selection of the appropriate dryer type for a given 

application. Each type of a dryer has specific characteristics, which make it suitable or unsuitable for specific applications 

[1]. 

Drying of slurries on inert particles is a relatively novel technology to produce powdery materials. It was originally 

developed for drying of pigments, chemicals and some biomaterials to eliminate constrains of spray, drum and paddle 

dryers. Classical fluid bed, spouted bed, spout-fluid bed, jet spouted bed and vibrated fluid bed are the most popular dryers 

used for drying on inert particles [2-10]. Independently of the hydrodynamic configuration of a dryer, the principle behind 

this technology is based on drying of a thin layer of the slurry that coats the surface of inert particles. Depending on the 

dryer type, these particles can be vibrated, fluidized or spouted either by hot air only, or in combination with a mechanical 

device installed within the dryer, such as an agitator or conveyor screw. The extensive introduction of fluidization into 
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drying processes resulted from several principal advantages. With respect to the main efficiency criteria, i.e. specific water 

evaporation rate, specific heat consumption and specific air consumption, a fluidized bed dryer with inert particles 

represents a very attractive alternative to other drying technologies. A high drying efficiency results from the large contact 

area and from the large temperature difference between the inlet and outlet air. 

The generalized diagram of a fluidized bed drying system is presented in Figure 1. The feed material is directly 

supplied into the column where inert particles are fluidized by hot air. The product is separated from the exhaust air by 

a cyclone and a bag filter. The drying mechanism depends on the feed slurry density and consistency, as illustrated 

schematically in Figure 2. If the feed is relatively diluted (a solution or a suspension) the drying mechanism consists of 

three steps, which occur simultaneously in different regions of the bed. The charged material forms a film, which 

adheres to the surface of inert particles. Because of the very large surface area of the particles and intensive fluidization, 

moisture is removed in the time frame of few seconds. Solids remaining on the surface of inert particles are peeled off 

by friction and collisions. Finally, the powdery product is elutriated from the inert bed with the exhaust air (Fig. 2a). If 

the feed is a dense slurry (paste) then wet paste aggregates fluidize together with the inert particles. During the drying 

process the size of aggregates decreases due to elutriation of dried particles from the bed surface (Fig. 2b). In this case, 

a more homogenous and stable bed can be obtained by incorporation of a low-speed mechanical mixer. Its role is to 

additionally prevent formation of large aggregates. Note that a typical dry particle is about two orders of magnitude 

smaller than the inert particles in the bed. Due to the intensive mixing of inert particles during fluidization the bed 

temperature is approximately uniform. 
 

  
Figure 1. Drying of suspensions in a flu-
idized bed of inert particles [11] (Reprinted 
from Drying of suspension and pastes in 
fluidized bed of inert particles J. Serb. 
Chem. Soc. 65(12):963–974(2000) with 
permission of Serbian Chemical Society) 

Figure 2. Drying mechanism a fluidized bed with inert particles with a feed:  
a) suspension, b) paste [11] (Reprinted from Drying of suspension and pastes in 
fluidized bed of inert particles J. Serb. Chem. Soc. 65(12):963–974(2000) with 
permission of Serbian Chemical Society) 

2. EXPERIMENTAL  

Our innovative fluidized bed dryer is schematically shown in Figure 3. The drying chamber is a cylindrical column 

Dc = 0.215 m i.d. and 0.3 m height, connected to a conical section of the dimensions 0.32 m i.d. and 0.3 m height. The 

overall column height is 1.2 m, where the effective column height (above the distributor) is 0.9 m. Different inert 

particles can be used, e.g. glass, alumina and zirconium oxide particles, depending on the type of material that is dried 

in the system. In the experiments presented in this paper, glass spheres of the mean diameter dp = 1.9410-3 m and 

density of 2460 kg/m3 were used. The total mass of inert glass particles was 5.10 kg, the static bed height was 95 mm 

and the total inert particle surface area was 6.55 m2. Minimum fluidization velocity for these particles was determined 

to be UmF = 0.96 m/s at ambient air temperature. The feed material (CuSO4 solution) was directly pumped into the bed 

at its axis, using a peristaltic pump. The feed outlet is located 0.1 m above the gas distributor.  

The product is separated from the air stream in a cyclone and a bag filter. Before leaving the system, the exhaust air 

passes through a packed bed scrubber. Temperature controller TIC1 maintains the inlet air temperature at the desired 

level. Temperature controller TIC2, which is located 0.7 m above the distributor plate and connected with the feeding 
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device, keeps the outlet air temperature constant (Tge). Temperature controller TIC3, which is also placed 0.7 m above 

the distributor plate, is set to the temperature 20 C above the outlet air temperature. Its role is to prevent overheating 

of the bed, in the case of the feeding device failure, by introducing pure water into the system. During the experiments, 

the inlet and outlet air temperatures were continuously recorded by using a data acquisition system as well as the 

solution flow rate. 

In order to calculate the uncertainty of the experimental measurements, standard deviation was used. Standard 

deviation represents the measure of the data distribution and was calculated according to the following equation:  

( )
N

2

i avg
i=1

1
SD x x

N
= −   (1) 

where xi is a value in the data set, xavg is the mean of the data set, and N is the number of data points in the population.  

The measured variables in our experiments on the basis of which the calculations were made were inlet and outlet 

air temperature and the solution flow rate. The calculated values of the standard deviations for all of the temperature 

measurements were between 0.206 and 1.457 for Tgi, between 1.169 and 5.450 for Tge and for solution flow rates 

between 0.224 and 1.257 for all of the experimental runs performed. 

 

 
Figure 3. Schematic diagram of the drying system (1 - tank, 2 - agitator, 3 -pump, 4 - air heater, 5 - fluidization column, 5a - 
distributor, 5b - inert particles, 5c - deflector, 6 - cyclone, 6a - rotary valve, 7 - bag filter, 8 - product containers, 9 - scrubber, 9a - 
nozzle, 9b - packing, 10 - blower) [11] (Reprinted from Drying of suspension and pastes in fluidized bed of inert particles J. Serb. 
Chem. Soc. 65(12):963–974(2000) with permission of Serbian Chemical Society) 
 

The presented drying system is designed in order to investigate potential applications and to define optimal process 

parameters depending on the material that is dried and the quality of the final product.  

In this paper, the experimental results obtained for CuSO4 drying are presented. The drying tests were performed 

continuously. 29 experiments were conducted, at different inlet air temperatures (140, 180, 220, 250 and 280 C). Due 

to the intensive mixing during fluidization, drying temperatures were the same as the outlet air temperatures and varied 

between 60 and 114 C. CuSO4 solution of 5 % w/w concentration was used in the experiments. Solution flow rates were 

varied in the range 2.8 - 21.8 kg h-1. 
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3. RESULTS AND DISCUSSION 

In the described fluidized bed dryer, a number of materials were successfully treated, such as fungicides and 

pesticides (Zineb, Ziram, Propineb, Mangozeb, copper oxy-chloride, copper oxy-sulphate, bordeaux mixture), inorganic 

compounds (calcium carbonate, calcium sulphate, cobalt carbonate, electrolytic copper, copper sulphate, sodium 

chloride), complex compounds (organo-bentonite) and waste water treatment sludge. The experimental trials of drying 

several organic and biological materials such as calcium stearate, tartaric acid, brewery yeast, soya milk and their 

mixtures, liposome, tomato pulp, raw eggs, starch, were unsuccessful because of the powder characteristics. 

Also, the possibility of drying municipal waste water treatment sludge was investigated in this system. Benefits of 

drying this sludge can be seen in several aspects: the dried sludge can be stored for longer periods of time and further 

used as an organic fertilizer, it can be a source of useful (active) microorganisms that can be reused in waste water 

treatment. Drying also enables incineration or co-incineration of sludge. Sludge drying process reduces mass and volume 

of the product, making its storage, transport, packaging and retail easier [2-4]. 

In this paper, the experimental results obtained for CuSO4 drying are presented. For all runs, a desired air flowrate 

and air inlet temperature (TIC1) were selected. When the temperature above the bed (outlet air temperature) reached 

the set value (TIC2), the feeding process begun. Subsequently, the outlet air temperature was maintained constant since 

the TIC2 controls the feeding device. Steady state was reached after several minutes since the inlet air temperature had 

reached the set value TIC1. As the fluidized bed is well mixed, the drying temperature was the same as the outlet air 

temperature. The system was very stable, i.e. during operation the outlet air temperature variations (Tge) were less 

than 5 C, as can be seen from Figure 4 in which the error bars are also presented. The calculated standard deviation 

for Tgi in this case is SD (Tgi)=0.2926, and for Tge is SD (Tge)= 1.1677. 

Figure 5 presents the specific water evaporation rate (kgH2O/m2h) as a function of the temperature difference 

(Tgi- Tge), where Tgi and Tge are the inlet and outlet air temperature, respectively. It can be seen that evaporation for a 

fixed gas velocity is directly proportional to the temperature difference. The highest evaporation rate in our runs was 

601 kgH2Om-2h-1 at the superficial air velocity (calculated at 20 °C) of U0 = 1.91 ms-1 and at the inlet air temperature of 

Tgi = 279 °C and the outlet air temperature of Tge = 71°C. 

 

 

 
Tgi – Tge / oC 

Figure 4. Example of the recorded temperature profile (feed 
CuSO4, suspension mass flowrate GSUS = 11.8 kg/h, water content 
in the suspension, x=0.5, inlet air temperature, Tgi=180 oC, outlet 
air temperature, Tge= 72 oC), SD(Tgi)=0.2926 and SD(Tge)= 1.1677 

Figure 5. Specific water evaporation rate for a CuSO4 solution as 
a function of the temperature difference between the inlet and 
outlet air temperatures 

 

Figure 6 shows the specific heat consumption of the process. This parameter was calculated on the basis of 

temperature differences T1 = Tgi - Tge and T2 = Tgi – T0, where T0 represents the ambient temperature. As can be seen, 
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the specific heat consumption q (based on T1) is approximately independent of drying conditions and it is slightly above 

the latent heat of water evaporation. The specific consumption q' based on T2 decreases as the temperature difference 

increases, indicating that the overall system efficiency increases with the increase in the inlet air temperature. 

 
   Tgi – Tge / oC 

Figure 6. Specific heat consumption values q and q` as functions of the inlet and outlet air temperature difference Tgi-Tge, at different 
inlet air temperatures, Tgi; blue line presents the latent heat of evaporation, r (feed CuSO4 solution) 
 

Figure 7 shows the specific air consumption per mass of evaporated water (kg kgH2O
-1) as a function of the 

temperature difference, Tgi-Tge. It can be seen that the data follows the same trend as the specific heat consumption 

shown in Figure 6. 

 
   Tgi – Tge / oC 

Figure 7. Specific air consumption as a function of the inlet and outlet air temperature difference Tgi-Tge  

 

Table 1 presents data for a typical drying run. 

Energy efficiency of a dryer, as well as the operating regime in which the drying process takes place, can be described 

using various parameters, such as the volumetric evaporation rate, heat losses to the environment, specific heat 

consumption and thermal (energy) efficiency. 
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Table 1. Typical drying run (CuSO4 solution, water content in the suspension, x = 0.95 kgH2O kgSUS
-1) 

Air flowrate (20 °C) m3h-1 V0 250 

Superficial air velocity (20 °C) ms-1 U0 1.91 

Inlet air temperature °C Tgi 280.79 

Exit air temperature °C Tge 101.86 

Suspension flowrate kgsush-1 Gsus 18.91 

Water flowrate (in solution) kgH2Oh-1 GH2O 17.97 

Dry mater flowrate (in solution) kgdmh-1 Gdm 0.95 

Specific water evaporation rate kgH2O m-2h-1 WH2O 495 

Specific air consumption kg kgH2O
-1 S 16.47 

Specific heat consumption (based on Tgi-Tge) kJ kgH2O
-1 q 2984 

Specific heat consumption (based on Tgi-T0) kJ kgH2O
-1 q’ 4349 

Water content in the product % s 5.95 
 

Of all the mentioned parameters, the most commonly encountered in the technical literature is the thermal 

efficiency [1,2,12]. This parameter ('T, ''T or T) mainly relates the amount of heat required for evaporation of 

moisture calculated in relation either to the temperature of the surface of inert particles (Tp) or to the ambient 

temperature (T0) or to the wet bulb temperature (Twb), respectively, with the total energy brought to the dryer. Thus, it 

is defined by one of the following equations: 

gi gi ge gi ge' '

gi gi wb gi 0

( - ) ( - ) ( )
, ,

( - ) ( - ) ( )

ge

T T T

p

T T T T T T
or or

T T T T T T
  

 −
= = =

−
  (2) 

In Figure 8 the thermal efficiency, T, calculated in relation to the ambient temperature according to the Eq. (2) is 

shown for different inlet air temperatures. As can be seen, the thermal efficiencies are in the interval T = 0.240.80 in 

our system for all the performed experiments, compared to T  0.3 reported for soybean milk drying in a vibro-fluidized 

bed at similar operating conditions (Tgi  150-160 °C) [12]. 

 
   Tgi – Tge / oC 

Figure 8. Thermal efficiency (feed CuSO4 solution) as a function of the temperature difference between the inlet and outlet air 
temperatures for different inlet temperatures 
 

Drying efficiency increases with the increase in the temperature difference. This would mean that for a fixed inlet 

air temperature (Tgi), the drying temperature (Tge) should be as low as possible in order to maximise the temperature 

difference Tgi-Tge. The main factors influencing the choice of the Tge value are the product quality and quality of 

fluidization. Usually, the residual moisture content of the product powder is the main criterion.  
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3. 1. Heat and mass balances 

Theoretically, water evaporation capacity can be determined from the overall heat balance: 

Gvcv/Tgi – Tge) = Gdmcdm(Tge – T0) + GH2O [cH2O (Tge – T0)+rH2O] + Qg (3) 

where Gv – is the air mass flowrate, Gdm – the mass flowrate of dry matter, GH2O – the water mass flowrate, rH2O – the 

latent heat of water evaporation, cv - specific heat of air, cdm - specific heat of dry product and Qg - heat losses. 

Since the mass flow of the suspension, Gsus is: 

Gsus = Gdm + GH2O  (4) 

and if water content is defined as x = GH2O / Gsus it follows that Gdm = (1 - x)Gsus = [(1 – x)/x)] GH2O. 

By using these relationships, Eq. (3) becomes 

( )
( ) ( ) ( )

2

2

2 2

gi ge gH O

H O

dm ge 0 ge 0 H O

- -1
=

1-x / - -

v v

c c H O

G c T T QG
W

A A x c T T c T T r
= 

+ +  

  (5) 

where WH2O is the specific water evaporation rate and Ac is the column cross-sectional area. 

For a fixed geometry of the fluidized bed (Ac), the air flowrate, i.e., the superficial air velocity follows from the fluid 

bed mechanics and it should be usually 2–3-fold higher than the minimum fluidization velocity (UmF). Since the outlet 

air temperature (Tge) is selected according to the thermal stability of the drying material and desired residual moisture 

content, Eq. (5) provides a simple relationship between the inlet air temperature (Tgi) and the specific water evaporation 

rate (WH2O). 

A comparison between experimental and calculated values of WH2O, by using an estimated value of 

cdm  0.85 kJ kg-1°C-1, is shown in Figure 9. The mean absolute deviation between the experimental and calculated values 

is 5.8 %, while 85 % of the data falls within 10 %. Differences between the experimental and calculated values are 

probably due to the fact that heat losses were neglected in the calculations.  

 

 
   WH2O (exp) / kg m-2 h-1 

Figure 9. Comparison of the experimental and calculated values of the specific water evaporation rate. 
 

Application of the fluidized bed dryer at the industrial level would lead to significant savings compared to, e.g. the 

conventionally used tunnel dryer chamber. The effective surface of the fluidization column is about 700 times smaller 

than the required drying trays area for the same capacity. In comparison to the tunnel dryer with trays energy savings 

of at least 50 % can be achieved. By introducing a high-efficiency dispersion dryer in the production line, due to the energy 

efficiency of the drying process, large energy savings can be achieved, so the plant would pay off after 2 - 3 years only at 

the expense of energy savings in comparison to the most commonly used conventional tunnel dryers. Application of the 
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presented technology would enable realization of a plant of significantly smaller dimensions as compared to other types 

of devices with the same evaporation capacity. A relative comparison of sizes of different dryers with the fluidized bed 

dryer is illustrated in Figure 10, i.e. for suspension with 65 % water content and for capacity of 8 t of dry powdered 

product per day, it is required: the tunnel dryer with 240 trays 2x1 m in size, spray dryer of 7 m in diameter and fluidized 

bed dryer of 0.8 m in diameter. 

 

 
Figure 10. Comparison of different drying systems for the same evaporation capacity 

4. CONCLUSIONS 

Drying of solutions, suspensions and pastes in a fluidized bed of inert particles is a simple and very effective 

technique for all materials that do not adhere to the inert particles. This drying concept has some important advantages 

compared to other drying systems, such as: higher capacity per unit volume of the dryer, lower energy consumption 

and a lower specific air consumption. The high drying efficiency results from the large contact area and the large 

temperature difference between the inlet and outlet air. Rapid mixing of the particles leads to nearly isothermal 

conditions throughout the bed. A simple mathematical model based on the overall heat balance predicts the dryer 

performance quite well. In our experiment’s solutions, suspensions and very dense pastes were successfully treated. 

The results presented in this paper for CuSO4 solution drying have shown that fluidized bed dryer can efficiently be used 

for this material. 

5. NOMENCLATURE  

Latin symbols 

Ac / m2  - Cross-sectional area of the column at distributor plate 

cdm / kJ kg-1 K-1  - Specific heat of dry matter 

cH2O / kJ kg-1 K-1  - Specific heat of water 

cv / kJ kg-1 K-1  - Specific heat of air 

dp / m  - Inert particle diameter 

Dc / m  - Column diameter (at distributor plate) 

Gdm / kg s-1  - Mass flowrate of dry matter 

GH2O / kg s-1  - Water mass flowrate 

Gsus / kg s-1  - Suspension mass flowrate 

Gv / kg s-1  - Air mass flowrate  

N  - Number of data points in the population 
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Q / kJ kgH2O
-1  - Specific heat consumption, based on Tgi-Tge 

q’ / kJ kgH2O
-1  -Specific heat consumption, based on Tgi-T0 

Qg / kJ s-1  - Heat losses 

rH2O / kJ kgH2O
-1  - Latent heat of water evaporation 

s / %  - Product moisture content 

S / kgAIR kgH2O
-1  - Specific air consumption (Gv/GH2O) 

SD  - Standard deviation 

Tgi / oC  - Inlet air temperature 

Tge / oC  - Outlet air temperature 

T0 / oC  - Ambient temperature 

Twb / oC  - Wet bulb temperature 

U0 / m s-1  - Superficial fluid velocity at distributor plate (at T0) 

UmF / m s-1  - Minimum fluidization velocity at distributor plate (at T0) 

V0 / m3 s-1  - Air flowrate (at T0) 

WH2O / kg m-2s-1 - Specific water evaporation rate (GH2O/Ac) 

x / kg kg-1  - Water content in the suspension (GH2O/Gsus) 

xi  - Value in the data set 

xavg  - Mean of the data set  

Greek symbols 

T  - Thermal efficiency in relation to T0 

’T  - Thermal efficiency to the surface particles temperature Tp 

’’T - Thermal efficiency in relation to Twb 
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SAŽETAK 

Visokoefikasni disperzni sušionik – Inovativni proces sušenja rastvora, suspenzija i pasti u fluidizovanom sloju 
inertnih čestica 

Mihal M. Đuriš1, Tatjana S. Kaluđerović Radoičić2, Darko R. Jaćimovski1 i Zorana Lj. Arsenijević1 

1Naučna ustanova – Institut za hemiju tehnologiju i metalurgiju – Nacionalni institut, Centar za katalizu i hemijsko 
inženjerstvo, Univerzitet u Beogradu, Njegoševa 12, Beograd, Srbija  
2Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, Beograd, Srbija 

(Stručni rad) 

U ovom radu je predstavljen inovativni sušionik sa fluidizovanim slojem inertnih 

čestica. Prikazani sistem može da se koristi za sušenje rastvora, suspenzija i pasti u 

cilju dobijanja praškastog produkta. Eksperimenti su rađeni na pilot postrojenju čiji 

je centralni deo cilindrična kolona prečnika 215 mm i visine 1200 mm. Korišćene su 

staklene sfere kao inertne čestice. U radu je prikazano sušenje rastvora CuSO4. 

Ispitivan je uticaj operativnih uslova na performanse sistema za sušenje, kao i na 

kvalitet praškastog produkta. Kvantifikovani su glavni parametri koji opisuju 

performanse sušionika, kao što su specifična brzina isparavanja, specifična 

potrošnja toplote i specifična potrošnja vazduha. Usled intenzivnog mešanja u 

fluidizovanom sloju postižu se približno izotermni uslovi sušenja. Izvršena je 

procena energetske efikasnosti sušenja. Jednostavni bilansi prenosa mase i toplote 

adekvatno predviđaju radni režim sistema za sušenje. 

  Ključne reči: prah; veličina čestica; 

specifična brzina isparavanja; speci-

fična potrošnja vazduha 




