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Abstract 

The purpose of this extensive study is to use a quality by design (QbD) approach and multiple 

machine learning algorithms in facilitating wet granulation process scale-up. This study 

investigated the extent of influence of both formulation and process variables. Furthermore, 

measured responses covered compressibility, compactibility and manufacturability of a 

powder blend. Finally, the models developed on laboratory scale samples were tested on pilot 

and commercial scale runs. Tablet detachment and ejection work were calculated from force-

displacement measurements. Significant numerical and categorical input variables were 

identified by using a stepwise regression model and their importance evaluated by using a 

boosted trees model. Pilot scale runs resulted in the highest tablet tensile strength and 

compaction work as well as the highest detachment and ejection work. Critical quality 

attributes (CQAs) that were the most successfully predicted were the compaction, 

decompaction, and net work, as well as the tablet height. The most important input variable 

influencing all CQAs was the compaction force. Application of the boosted regression trees 

model resulted in the lowest Root Mean Square Error (RMSE) values for all of the responses. 

This work demonstrates reliability of predictions of developed models that can be successfully 

used as a part of a QbD approach for wet granulation scale-up. 
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1. INTRODUCTION 

Quality by design (QbD) is a pharmaceutical design, development and research concept using a systematic, risk-

based, holistic approach [1]. It is based on proactive identification and definition of a desired quality target product 

profile (QTPP) by using the existing scientific knowledge [2]. After establishing QTPPs, product formulation and 

manufacturing process design should be developed together with defining the critical quality attributes (CQAs), which 

are characteristics that reflect the final process and product qualities. Defining all critical sources of variability in a 

formulation and manufacturing process will provide development of the design space [3] while defining critical material 

attributes (CMAs) and critical process parameters (CPPs) will provide control of the manufacturing process to produce 

a product of a constant quality [4]. 

Wet granulation is a complex manufacturing process influenced by formulation variables (ingredient concentration, 

particle shape, particle size distribution, solubility, hygroscopic nature etc.), and process conditions (impeller speed, milling 

speed, screen size, mixing time, amount and rate of liquid addition [5], moisture of granules etc.). All those variables can 

directly influence the behavior of granules (flow, compressibility, compactibility, surface area etc.) as well as the tablet 
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properties (porosity, tensile strength, disintegration time, elastic recovery, dissolution etc.). It is important to define 

variables that have a significant impact on the product quality and to distinguish them from those which impact is minimal.  

It is very rare to have the ideal wet granulation scale-up in the real production environment. Challenges of wet 

granulation scale-up should be approached with the knowledge and experiences gained from prior stages of the process 

development with QbD principles applied [6]. For scale-up study purposes, two processes may be considered similar if 

there is a geometrical (the same ratio of linear dimensions and shape), a kinematic (the same ratio of velocities between 

corresponding system points) and a dynamic (the same ratio of forces between corresponding system points) similarity 

[7]. There are often differences in granulation or milling equipment across scales (e.g. different blade shape, diameter, 

milling mechanism etc.). Even when the equipment from the same manufacturer is used, with the same geometrical 

properties, the scale-up process of wet granulation can be a challenge [8]. Nevertheless, by developing a progressive 

design space with a QbD risk based approach, production of pharmaceutical products is robust enough to allow for 

scale-up adjustments of process parameters [9,10].  

Critical evaluation of input variables, which are defined by risk assessment, would be traditionally performed by 

varying one factor at a time (OFAT), while keeping the others constant. This approach exhibits several problems, one of 

which is not considering interactions between different variables. The Design of Experiments (DoE) approach is capable 

of examining systemic variation of multiple variables, creating mathematical models of a process in order to predict the 

process performance. Results obtained by DoE statistical analysis using the Response Surface Method (RSM) can be 

utilized to generate an effective design space [11]. A reliable design space for a scale-up study should be based on 

experiments carried out on each scale, which is not always practical and can incur high costs. DoE is almost always 

performed on a smaller rather than on a commercial scale. Using multivariate data analysis (MVDA) models, process 

parameters can be summarized by a few critical variables instead of a great number of variables with limited 

significances [12]. There are many examples of machine learning techniques used in product/process development and 

optimization [4,13-15]. The choice of a model depends on number of factors including the type of variables (numerical 

or categorical), the number of responses and the effects that inputs create on those responses. The effect of inputs on 

responses is often not known in advance, so different modeling techniques should be applied to determine which 

technique is optimal for a certain data set. Otherwise, a model could be under-fitting (would not perform on the training 

data set and would not have satisfactory predictions for a new data set) or over-fitting (the model would have ‘too good’ 

performance with the training data set, so the prediction would not be precise with a new data set).  

Studies utilizing the QbD approach and machine learning modeling for scale-up of wet granulation processes often 

use either process parameters or formulation factors [16]. Furthermore, responses being observed are usually related 

to granule properties (particle size distribution [17], porosity [18], size and bulk density [19]). In studies conducted by 

Aikawa et al. [10] and Badawy et al. [20] the analyzed responses were tablet properties. Those studies, however, did 

not utilize machine learning techniques. Previous studies with machine learning modeling involved testing of the 

prediction capability of developed methods on either laboratory [4] or pilot scale runs [21]. In this study, for the first 

time, the developed models were tested using a large data set obtained from both pilot and commercial scale runs. We 

also utilized and compared multiple machine learning techniques (regression, regularization, decision tree and 

ensemble algorithms). Both formulation and process parameters were used as input variables. Analyzed responses are 

quality attributes of granules and tablets relevant in the context of the complex system of the wet granulation process 

scale-up – compactibility [22], compressibility and manufacturability. This article provides an extensive example of how 

different machine learning techniques can be utilized to determine significant variables (both categorical and numerical) 

and the magnitude of their influence on tablet CQAs.   

2. EXPERIMENTAL 

2. 1. Experimental design 

Tablets were made by varying concentrations of tribasic calcium phosphate (TCP) (Innophos Inc., Cranbury, New 

Jersey, USA) that was used as a filler and sodium starch glycolate (SSG) (DFE Pharma, Goch, Germany) that was used as 
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a disintegrator. SSG was added extragranularly. The binder solution was made using water as a solvent and povidone 

(ISP Technologies, Inc., Wayne, New Jersey, USA) as a binding agent. Tablets were lubricated with 1% of magnesium 

stearate (FACI S.p.A., Carasco, Italy).  

The mixer fill level was at 80% for all scales. The impeller speed was constant for all experiments on each scale level. 

Laboratory scale experiments were conducted on a Hobart planetary bench mixer, model N50-60 (Troy, Ohio, USA), and 

the pilot and commercial scale experiments were conducted on a Diosna mixer-granulator, model P 300 (Osnabrück, 
Germany). Wet granules were dried at 45°C in a Glatt fluid bed dryer (Binzen, Germany), model TR2 for laboratory scale 

experiments and model WSG 60, for pilot and commercial scale experiments. Loss on drying (LOD) was measured using 

a O’Haus, model MB35 (Parsippany, New Jersey, USA), drying granules for 10 minutes, at 80°C. Mill Powder Tech (knives 

positioned around the horizontal axis), model RT-10HS (Tainan City, Taiwan), was used for laboratory scale experiments. 

For pilot scale experiments a Quadro Comil (impeller spinning around the vertical axis), model 194 (Waterloo, Ontario, 

Canada) was used with different shapes of impeller bars (round bar impeller ‘1601’ and square bar impeller ‘1607’). Fitz 

mill (knives were positioned around the horizontal axis, using the ‘Knives forward’ setting), model D (Elmhurst, Illinois, 

USA) was used for commercial scale experiments. The laboratory scale mill had a constant speed. The Quadro Comil 

was operating at speeds of 200, 300 and 400 rpm, and the Fitz mill was operated with slow, medium and fast speeds. 

Screens used for milling were 0.69, 0.81, 0.84, 1.00, and 1.04 mm with round shaped holes, with the exception of 

1.00 mm which had square shaped holes.  

Bulk powders were compressed into round tablets, 6 mm in diameter, and weight of 110 mg using a compaction 

simulator Gamlen tablet press (Gamlen Tabletting, UK) [23]. The compaction speed was constant (60 mm/min) with the 

graph sampling rate of 200 Hz. There were total 84 laboratory, 48 pilot and 36 commercial scale runs. Each bulk powder 

sample was compressed using compaction pressures of 70, 105, 140, and 175 MPa. Each samples was compressed in 

triplicates for every given compaction pressure.  

2. 2. Testing & data analysis 

Particle size distribution was determined using sieves Endecotts Ltd. (London, UK) with hole sizes 150, 250, and 

500 µm. Tablet breaking force was measured by a tablet hardness tester, Erweka, model TBH 30 (Heusenstamm, 

Germany).  

Tablet in-die tensile strength was calculated using the Equation 1: 

2
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D H



=   (1) 

where σin is the tablet in-die tensile strength, F is the tablet breaking force, Din is the in-die tablet diameter, and Ha is 

the minimum in-die tablet height under the maximum compaction pressure. 

Tablet out-of-die tensile strength was calculated using the Equation 2:  
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where σout is the tablet out-of-die tensile strength, Dout is the out-of-die tablet diameter, and Hc is the out-of-die tablet 

height.   

Compaction pressure was calculated per the Equation 3: 
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where P is the pressure applied by a punch, and Fc is the compaction force. 

“In-die” elastic recovery was calculated as immediate axial recovery (IAR), using the following equation: 
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where Hb is the tablet height at the end of the decompaction phase. 

Out-of-die elastic recovery, which occurs after ejection, is described by the cumulative axial recovery [24], and the 

volumetric strain recovery (which accounts for changes in both tablet height and diameter). Cumulative axial recovery 

(CAR) was calculated using the following equation [24]: 

100c a
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H H
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−
=  (5) 

Volumetric strain recovery (VSR) was calculated using the Equation 6 [25]: 
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Compaction work (Wc), decompaction work (Wdc), net work (Wn), detachment work (Wd) and ejection work (We) 

were calculated as the area under the curve (AUC) of the respective force-displacement diagram (Fig. 1). The 

decompaction curve represents elastic relaxation of the material. Net work is the effective work, which is spent on 

compaction after reversible energy is returned during the decompaction stage.  
 

  

 

Figure 1. Force-displacement curves for calculation of work as 
area under the curve (AUC): A) compaction and decompaction 
work, B) detachment work and C) ejection work 

2. 3. Modeling techniques 

Machine learning techniques used in this study are suitable for different types of variables (Fig. 2): linear regression, 

stepwise regression, lasso regression [26], ridge regression [27], elastic net [28], regression trees [29] and boosted 

regression trees [30] modeling techniques. The software used was MATLAB® 2013b (MathWorks, USA).  
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Figure 2. Machine learning models used for wet granulation scale-up modelling 

 

To examine normality and relation between input variables and responses the Shapiro-Wilk test [31] and the Kruskal-

Wallis rank sum test [32] were performed. The Shapiro-Wilk test has a significant value W, which is equal to 1 for normal 

data distribution and lower than 1 for non-normal data distribution. W is calculated using the following equation: 
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where x(i) is the ith order statistic, and n is the number of examples used for model training. 

Models were evaluated by comparison of root-mean-square-error (RMSE) values (root of the mean square error – 

MSE), which are calculated by the following equation: 
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where yi is the actual response value and ŷi is the model predicted value. Factors with p-value <0.05 were considered 

statistically significant [33].  

3. RESULTS 

Results show that tablet σ, Wc, Wdc and Wn increase as the applied compaction pressure increases (Fig. 3). Significant 

differences between σin and σout were not found at any of the applied compaction pressures. The tensile strength and 

compaction work are the highest for the pilot scale samples, as compared to laboratory and commercial scale data. The 

difference between Wc and Wn increases with the increased applied compaction pressure, which points to an increase 

in the decompaction work (Fig. 3). The decompaction work has a negative value compared with Wc and Wn and is shown 

as an absolute value.  

Variations in the tablet height were monitored at the end of the compaction stage, the end of the decompaction 

stage and outside of the die. Tablet height and its correlation with the applied compaction pressure at different time 

points, at laboratory, pilot and commercial scales are shown in Figure 4. Tablet height is negatively correlated to the 

compaction pressure. Significant differences were not found between Hb and Hc. The only difference between Hb and Hc 

is noticed in commercial scale experiments, at compaction pressures of 70 and 105 MPa.  

Elastic recovery increases with the increase in the compaction pressure (Fig. 5). Significant differences between CAR 

and VSR were not found at all scale levels. IAR is the highest for commercial scale samples although these data show 

the highest standard deviation (SD). 
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Figure 3. Comparison of the tablet tensile strength (in and out of 
the die), compaction, decompaction and net work with increasing 
the applied compaction pressure at: A) laboratory, B) pilot and C) 
commercial scale runs 

 

  

 

Figure 4. Comparison of Ha, Hb and Hc at increasing the applied 
compaction pressure at: A) laboratory, B) pilot and C) commercial 
scale runs.  

 

Figure 6 shows the increase of Wd and We with the increase in the compaction pressure. The increase of We is not 

significant while Wd increases up to 140 MPa, after which value of the compaction pressure it does not further increase 

significantly being the highest for pilot scale samples.   
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Figure 5. Comparison of IAR, CAR and VSR with increasing the 
compaction pressure at: A) laboratory, B) pilot and C) commercial 
scale runs 

 

 
Figure 6. Comparison of detachment and ejection work with increasing the compaction pressure at laboratory, pilot and commercial 
scale runs 

 

The obtained data were further analyzed through machine learning modeling. Firstly, the Shapiro-Wilk test was 

carried out (Fig. 7), with W values shown in Table 1. A regularization effect was applied to avoid overfitting of the models.  

Further, we used a non-parametric approach – the Kruskal-Wallis rank sum test to find relation between input 

variables and responses (Table 2) using stepwise, ridge, lasso and elastic net regression models. The data are then 

divided into “buckets”, each representing a different scale of experimental runs.  

The models are compared using R-squared and MSE values (Fig. 8). MSE values for responses Wc, Wdc, Wn, Ha, Hb, 

and Hc were minimal (0.0002-0.03, with the exception of 0.37 determined for the response Wc at the commercial scale). 

The other responses showed the highest MSE values using a stepwise regression model, with commercial scale runs 

showing the highest MSE and lowest R-squared values.  
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Figure 7. Data distribution analysis using the Shapiro-Wilk test 

 

Table 1. The Shapiro-Wilk test for different responses with W 
and p-values 

Response W p-value 

σin 0.94 *** 

Wc 0.96 *** 

Wdc 0.90 *** 

Wn 0.97 ** 

Ha 0.98 *** 

Hb 0.97 *** 

Hc 0.96 *** 

IAR 0.97 ** 
*p < 0.05; **p < 0.01; ***p < 0.001 

 

Table 2. The Kruskal-Wallis rank sum test with Chi-square and p-
values 

Response Chi-squared p-value 

σin 22.189 *** 

Wc 7.1463 * 

Wdc 43.769 *** 

Wn 11.857 ** 

Ha 23.322 *** 

Hb 19.575 *** 

Hc 37.083 *** 

IAR 5.8947 0.053 
*p < 0.05; **p < 0.01; ***p < 0.001 

 

 

 
Figure 8. “Bucket” model analysis of data obtained from laboratory, pilot and commercial scale runs. Comparison of stepwise, ridge, 
lasso and elastic net regression models using: A) MSE and B) R-squared values. 
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Finally, laboratory scale runs were used for training while pilot and commercial scale runs were used for testing 

machine learning algorithms. Models were evaluated by comparing their RMSE values. RMSE train values were the 

highest for the response IAR (3.19-3.73), followed by responses σin and σout (0.14-1.07) with the ridge regression model 

having the highest and the stepwise regression model the lowest RMSE values. RMSE test values were the highest for 

responses σin and σout (0.93-4.30) followed by the response IAR (0.53-2.37). The model with the best fit of data for 

responses σin, σout and IAR was the boosted regression trees (0.93, 0.93 and 0.53 for the RMSE test, respectively). 

Responses Ha, Hb, Hc and Wdc had the lowest values for both train and test RMSE for all algorithms applied. Despite the 

high RMSE train values, all responses had high R-squared values across all models applied (Fig. 9). 
 

 
Figure 9. Comparison of train and test values: A) RMSE and B) R-squared. Laboratory scale runs were used for training the models 
while pilot and commercial scale runs used for testing the models 

 

Table 3 shows significant individual variables and their estimated correlation orientations chosen by the stepwise 

regression model. Variables with positive correlations are marked with ‘+’ while those with negative correlations are 

marked with ‘–‘ signs.  

 
Table 3. Identification of significant variables and their estimated correlation orientations determined by using a stepwise regression 
model and selected responses 

Significant Variables 
σin Wc Wdc Wn Ha Hb Hc 

Responses 

Compaction force, N + *** + *** – *** + *** – *** – *** – *** 
TCP, % + *** – ***  – *** –  ** –  ** – *** 
SSG, % – * – ***  – ***   – *** 
Screen shape (round) –  **      – ** 
Water concentration, % –  ***      – *** 
Particle size > 500 µm  + **  + ***    
Particle size 250 - 500 µm  + ***  + ***    
Particle size 150 - 250 µm + ***       
Particle size 0 - 150 µm + ***       
*p < 0.05; **p < 0.01; ***p < 0.001 
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The extent of influence of individual variables is shown by the boosted regression trees model predictor importance 

analysis (Fig. 10). It is evident that the compaction force is the most influential variable for all responses.  

 

  
Figure 10. Boosted trees regression predictor importance of: A) σin, B) Wc, C) Wdc, D) Wc, E) Ha, F) Hb and G) Hc.  

4. DISCUSSION 

Compaction work is a measure of the forces applied in processes that are involved in compaction of a material (such 

as plastic deformation or fragmentation) [34,35]. Compactibility is characterized by the tablet tensile strength, while 

elastic recovery is used to describe compressibility of a powder blend [36]. Many issues in pharmaceutical 

manufacturing are direct consequences of tablet expansion, which is caused by elastic behavior of materials [37]. At the 

decompaction stage, once the upper punch starts to ascend, materials start to undergo a process of elastic deformation, 

which may continue after the tablet ejection from the die [38]. This tablet expansion is called time-dependent 

viscoelastic recovery [39]. It is well known that elastic changes in a tablet are negatively influencing compactibility of 

powders [40], which then influence coating and packaging processes as well as stability and storage.  

Manufacturability is another term often used to describe a power blend by using the tablet ejection stress. 

Detachment and ejection stresses correspond to forces applied on a compressed tablet residing in a die and are arising 

from residual die wall stresses along the axial and radial directions of a tablet [41]. Additional factors that influence the 

ejection stress are tablet dimensions, compact-die wall friction, compactibility of the powder, and its mechanism of 

compaction. High compaction pressure could increase the ejection force by increasing the residual die wall stress and 

wall friction. Neither of high compaction nor ejection forces are desirable since they expose tablets to high friction and 

ejection stresses, which may result in breakage of bonds between particles within a tablet [42], capping, lamination and 

punch sticking [43].  

In our study, pilot scale samples have shown the highest tablet tensile strength and compaction work as well as the 

highest detachment and ejection work. Pilot scale samples have also shown the highest compactibility but the lowest 

manufacturability as the ejection stress is significantly higher as compared to samples from laboratory and commercial 

scales, at all compaction pressures. Wd is dramatically higher than We, due to the design of the compaction simulator 

and a significantly longer distance needed to detach the tablet from the die base, than to eject the tablet into the 

ejection cavity [44]. 

There were negligible differences found between Hb and Hc, which indicates that most of the tablet elastic recovery 

is axial relaxation occurring in the die. Furthermore, comparison of CAR and VCR shows that volumetric expansion of a 
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tablet out of the die is not significant. It can be also be noticed that Hc is often lower than Hb, which could be explained 

by densification of the solid structure [42], which is known to occur in calcium phosphate. The commercial scale samples 

showed the lowest tablet height in the die, which can indicate good compressibility and high tensile strength. 

Corresponding σin and σout results were not the highest as compared to the other experimental scale levels probably 

due to subsequent elastic recovery, consistent with higher IAR, CAR and VSR values determined for these samples.  

The obtained scale-up data were further analyzed using the Shapiro-Wilk test. It was found that data do not exhibit 

normal distribution as all W values are below 1. Using the Kruskal-Wallis rank sum test it was found that each scale of 

experimental runs had different impacts on followed responses. High MSE values determined by using the stepwise 

regression model indicated that data analysis requires regularization, which was applied through the ridge, lasso and 

elastic net regression techniques. Also, high MSE values determined for responses IAR, CAR and VSR, indicate that 

prediction of these responses is not reliable on the commercial scale level.  

For the final model development, different machine learning algorithms were applied, with the RMSE value used to 

evaluate models [45]. This parameter represents a measure of the absolute fit of the model to the experimental data 

or a measure of the average uncertainty that can be expected when predicting the performance of a new sample. Again, 

the tablet tensile strength and IAR had high RMSE values. The tablet tensile strength had lower RMSE train values but 

higher RMSE test values (most apparent in the stepwise regression model). This finding may indicate a possibility of 

overfitting, which can be resolved by using regularization methods (e.g. ridge, lasso and elastic net algorithms). For 

prediction of the tablet tensile strength, the boosted trees regression model was found to provide the best fit, with the 

lowest RMSE and highest R-squared values.  

Compaction work, decompaction work, net work and tablet height were tablet parameters successfully predicted 

using all machine learning techniques. The employment of these models represents the application of QbD principles 

during the scale-up process, where prediction of compressibility of a material is crucial for successful industrial tablet 

production.  

Stepwise regression was used as a model that separates significant from non-significant variables [46,47]. 

Compaction pressure is negatively correlated with Wdc, which is consistent with the expectation that a higher tensile 

strength will lead to a lower elastic recovery [48,49]. TCP concentration is negatively correlated with the tablet height. 

It is well known that calcium phosphates increase the tablet tensile strength [50], which will further result in lower 

height tablets. It has been reported that starches display significant elastic recovery [41], which is consistent with the 

obtained significance of SSG concentration in σin and Hc prediction. Furthermore, it was shown that higher 

concentrations of SSG caused a decrease in the tablet tensile strength [51]. Another finding from the stepwise regression 

model is that the concentration of water (binding solvent) is negatively correlated to σin. This is consistent with literature 

data, showing that the increase in solvent concentration, decreases the granule porosity together with the tablet tensile 

strength [48]. In addition, decreased concentration of a solvent provided more porous granules, better suitable for 

compaction by brittle deformation caused by TCP [52], which results in higher σin.  

The extent of importance of significant variables was studied using the boosted regression trees model. A high value 

of the predictor importance indicates that the predictor is important for a given variable [53], and represents an 

estimation calculated as a sum of estimates or changes in the MSE due to splits in the regression tree model divided by 

the number of branch nodes [54]. In the present study, the variable with the highest predictor importance is the 

compaction force, followed by the TCP concentration. All variables found to have a statistical significance are also 

significant from the practical point of view in influencing CQAs [12]. This is important for selecting the most important 

variables for formulation development, optimization and scale-up modeling. 

The results of this study are consistent with the machine learning models’ theoretical scope. CQA such as σin is shown 

to be influenced by the milling screen hole shape, which is a categorical input variable. Models that had the lowest 

RMSE values for this CQA were models that can analyze categorical input variables, e.g. decision tree (regression tree) 

and ensemble (boosted regression trees) models. CQAs such as Wc and Wn, although shown to be influenced by 

formulation and particle size factors, were affected mostly by the compaction force as a variable with the highest 

magnitude of influence, hence all studied models had similar and low RMSE values.  
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This work demonstrates that force-displacement measurements can be used to examine a material’s compactibility, 

compressibility and manufacturability in an easy and efficient way. Furthermore, obtaining data from laboratory, pilot and 

commercial scale provided an insight into the influences of multiple input variables on each CQA at a different scale level. 
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(Naučni rad ) 

Svrha ove opsežne studije je ispitivanje uloge principa dizajna kvaliteta i tehnika 

mašinskog učenja u uvećanju razmera procesa vlažne granulacije. Ova studija je 

istražila opseg uticaja promenljivih koje potiču od karakteristika formulacije i 

procesnih parametara. Pored toga, ispitivani odgovori su uključili oblasti 

kompresibilnosti, kompaktibilnosti i proizvodljivosti mešavine praška. Na kraju su 

modeli koji su razvijeni pomoću laboratorijskih probi testirani na uzorcima sa pilot 

i komercijalnog nivoa proizvodnje. Odvajanje i izbacivanje tableta izračunato je 

pomoću merenja zavisnosti sila-pomerj. Značajne numeričke i kategoričke ulazne 

promenljive su identifikovane koristeći regresioni model “korak po korak” (engl. 

stepwise) i njihova važnost je procenjena korišćenjem modela regresionih stabala 

sa tehnikom “jačanja” (engl. boosted). Pilot probe su pokazale najveću zateznu 

čvrstoću i rad kompakcije kao i najveći rad odvajanja i izbacivanja. Kritični atributi 

kvaliteta (KAK) koji su najuspešnije predviđeni su rad kompakcije, rad 

dekompakcije, neto rad i debljina tablete. Najvažnija ulazna varijabla koja utiče na 

sve KAK je sila kompakcije. Regresiona stabla sa tehnikom “jačanja” je model sa 

najmanjom vrednosti sume kvadrata razlika za sve praćene odgovore. Ovaj rad 

pokazuje pouzdanost razvijenih modela i može se uspešno koristiti kao deo pristupa 

dizajna kvaliteta u transferu procesa vlažne granulacije. 

  Ključne reči:  princip dizajn kvali-

teta; veštačka inteligencija; rad kom-

pacije; rad dekompakcije; elastični 

oporavak 


