Spectroscopic and quantum chemical elucidation of newly synthesized 1-aryl-3-methyl-3-phenylpyrrolidine-2,5-diones as potential anticonvulsant agents

Jelena Petković Cvetković¹, Bojan Božić², Nebojša Banjac³, Jelena Lađarević¹, Vesna Vitnik⁴, Željko Vitnik⁴, Nataša Valentić¹, Gordana Ušćumlić¹

¹Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P. O. Box 3503, 11120, Belgrade, Serbia
 ²Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
 ³Faculty of Agriculture, Department of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080, Belgrade, Zemun, Serbia

⁴Department of Chemistry, ICTM, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

Hem. Ind. 00 (0) XXX-XXX (2019)

CHARACTERIZATION OF INVESTIGATED COMPOUNDS

1-(4-Hydroxyphenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**1**, $C_{17}H_{15}NO_3$). White solid; Yield: 52%; mp: 173.2–174.9 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1774 (C=O)$, 1687 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta| \text{ ppm} = 9.78 (s, 1H, -OH)$, 7.50–7.27 (m, 5H, $-C_6H_5$), 7.12 (d, J = 8.0 Hz, 2H, $-C_6H_4$ –), 6.87 (d, J = 8.0 Hz, 2H, $-C_6H_4$), 3.13 (s, 2H, $-CH_2$ –), 1.73 (s, 3H, $-CH_3$); ¹³C NMR (50 MHz, DMSO): $|\delta| \text{ ppm} = 180.42 (C2)$, 175.03 (C5), 157.49 (Ph), 142.59 (Ph), 128.81 (Ph), 128.44 (Ph), 127.24 (Ph), 125.90 (Ph), 123.52(Ph), 115.49 (Ph), 47.53 (C4), 44.60 (C3), 24.51 (C6). Anal. calcd. for $C_{17}H_{15}NO_3$: C, 72.58; H, 5.37; N, 4.98; Found: C, 72.44; H, 5.31; N, 4.89.

1-(4-Methoxyphenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**2**, $C_{18}H_{17}NO_3$). Black solid; Yield: 62%; mp: 104.0– 126.0 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1772 \text{ (C=O)}$, 1710 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 7.52–7.31 (m, 5H, – C₆H₅), 7.25 (d, J = 8.0 Hz, 2H, –C₆H₄–), 7.05 (d, J = 8.0 Hz, 2H, –C₆H₄–), 3.79 (s, 3H, –OCH₃), 3.14 (ABq, 2H, $\Delta v_{AB} = 8.72 \text{ Hz}$, J = 18Hz, –CH₂–), 1.74 (s, 3H, –CH₃); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 180.33 (C2), 174.94 (C5), 159.10 (Ph), 142.54 (Ph), 128.80 (Ph), 128.47 (Ph), 127.25 (Ph), 125.93 (Ph), 125.02 (Ph), 114.21 (Ph), 55.40 (–O<u>C</u>H₃), 47.58 (C4), 44.61 (C3), 24.45 (C6). Anal. calcd. for C₁₈H₁₇NO₃: C, 73.20; H, 5.80; N, 4.74; Found: C, 73.14; H, 5.71; N, 4.63.

1-(4-Methylphenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (3, C₁₈H₁₇NO₂). White solid; Yield: 55%; mp: 105.5–106.6 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1772$ (C=O), 1707 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta| \text{ ppm} = 7.53-7.20$ (m, 9H, $-C_6H_5$ and N–C₆H₄–), 3.17 (ABq, 2H, *J* = 18Hz, $-CH_2$ –), 2.35 (s, 3H, Ph–CH₃), 1.75 (s, 3H, succ–CH₃); ¹³C NMR (50 MHz, DMSO): $|\delta| \text{ ppm} = 180.17$ (C2), 174.77 (C5), 142.79 (Ph), 138.05 (Ph), 129.88 (Ph), 129.44 (Ph), 128.80 (Ph), 127.24 (Ph), 126.99 (Ph), 125.90 (Ph), 47.63 (C4), 44.62 (C3), 24.45 (C6), 20.71 (–CH₃). Anal. calcd. for C₁₈H₁₇NO₂: C, 77.40; H, 6.13; N, 5.01; Found: C, 77.34; H, 6.01; N, 4.93.

1-phenyl-3-methyl-3-phenylpyrrolidine-2,5-dione (**4**, $C_{17}H_{15}NO_2$). White solid; Yield: 45%; mp: 105.5–106.6 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1784$ (C=O), 1721 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 7.56–7.28 (m, 10H, $-C_6H_5$ and $N-C_6H_5$), 3.18 (ABq, 2H, J = 18Hz, $-CH_2$ –), 1.75 (s, 3H, $-CH_3$); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 180.12 (C2), 174.72 (C5), 142.45

(Ph), 132.47 (Ph), 128.99 (Ph), 128.82 (Ph), 128.54 (Ph), 127.25 (Ph), 125.94 (Ph), 47.69 (C4), 44.64 (C3), 24.46 (C6). Anal. calcd. for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28; Found: C, 76.87; H, 5.61; N, 5.30.

1-(4-Fluorophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**5**, C₁₇H₁₄NO₂F). White solid; Yield: 57 %; mp: 119.8–121.1 °C; FT-IR (KBr): |v| cm⁻¹ = 1782 (C=O), 1712 (C=O); ¹H NMR (200 MHz, DMSO): |δ| ppm = 7.54–7.28 (m, 9H, –C₆H₅ and N–C₆H₄–), 3.18 (s, 2H, –CH₂–), 1.76 (s, 3H, –CH₃); ¹³C NMR (50 MHz, DMSO): |δ| ppm = 180.10 (C2), 174.68 (C5), 161.62 (d, *J* = 244.0 Hz, Ph), 142.41 (Ph), 129.49 (d, *J* = 9.0 Hz, Ph), 128.80 (Ph), 128.69 (d, *J* = 3 Hz, Ph), 127.28 (Ph), 125.98 (Ph), 115.91 (d, *J* = 22.5 Hz, Ph), 47.67 (C4), 44.64 (C3), 24.54 (C6). Anal. calcd. for C₁₇H₁₄NO₂F: C, 72.07; H, 4.98; N, 4.94; Found: C, 72.00; H, 4.86; N, 4.30.

1-(4-Chlorophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (6, C₁₇H₁₄NO₂Cl). White solid; Yield: 65%; mp: 120.2–122.2 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1778$ (C=O), 1710 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 7.63–7.27 (m, 9H, – C₆H₅ and N–C₆H₄–), 3.18 (ABq, 2H, Δv_{AB} = 12.65 Hz, *J* = 18Hz, –CH₂–), 1.75 (s, 3H, –CH₃); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 179.90 (C2), 174.47 (C5), 142.32 (Ph), 133.02 (Ph), 131.29 (Ph), 129.03 (Ph), 128.78 (Ph), 127.28 (Ph), 125.96 (Ph), 47.70 (C4), 44.61 (C3), 24.58 (C6). Anal. calcd. for C₁₇H₁₄NO₂Cl: C, 68.12; H, 4.71; N, 4.67; Found: C, 68.04; H, 4.59; N, 4.59.

1-(3-Chlorophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**7**, $C_{17}H_{14}NO_2Cl$). White solid; Yield: 66%; mp: 128.6–130.3 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1774$ (C=O), 1709 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 7.56–7.28 (m, 9H, $-C_6H_5$ and $N-C_6H_4-$), 3.17 (ABq, 2H, $\Delta v_{AB} = 12.65$ Hz, J = 18Hz, $-CH_2-$), 1.76 (s, 3H, $-CH_3$); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 179.82 (C2), 174.37 (C5), 142.28 (Ph), 133.79 (Ph), 133.04 (Ph), 130.60 (Ph), 128.77 (Ph), 128.55 (Ph), 127.27 (Ph), 126.11 (Ph), 126.01 (Ph), 47.71 (C4), 44.68 (C3), 24.56 (C6). Anal. calcd. for $C_{17}H_{14}NO_2Cl$: C, 68.12; H, 4.71; N, 4.67; Found: C, 68.07; H, 4.60; N, 4.59.

1-(4-Bromophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**8**, C₁₇H₁₃NO₂Br). White solid; Yield: 66%; mp: 112.3–114.4 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1776$ (C=O), 1709 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 7.73 (d, *J* = 8 Hz, 2H, – C₆H₄–), 7.53–7.27 (m, 7H, –C₆H₅ and N–C₆H₄–), 3.18 (ABq, 2H, $\Delta v_{AB} = 8.72$ Hz, *J* = 18Hz, –CH₂–), 1.75 (s, 3H, –CH₃); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 179.86 (C2), 174.44 (C5), 142.32 (Ph), 131.99 (Ph), 131.73 (Ph), 129.35 (Ph), 128.80 (Ph), 127.29 (Ph), 125.97 (Ph), 121.53 (Ph), 47.72 (C4), 44.62 (C3), 24.57 (C6). Anal. calcd. for C₁₇H₁₄NO₂Br: C, 59.32; H, 4.10; N, 4.07; Found: C, 59.25; H, 4.01; N, 3.99.

1-(3-Bromophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (9, $C_{17}H_{13}NO_2Br$). White solid; Yield: 66%; mp: 118.8–121.1 °C; FT-IR (KBr): $|v| cm^{-1} = 1772$ (C=O), 1709 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 7.69–7.28 (m, 9H, $-C_6H_5$ and $N-C_6H_4-$), 3.17 (ABq, 2H, $\Delta v_{AB} = 12.65$ Hz, J = 18Hz, $-CH_2-$), 1.76 (s, 3H, $-CH_3$); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 179.82 (C2), 174.38 (C5), 142.27 (Ph), 133.91 (Ph), 131.42 (Ph), 130.86 (Ph), 130.06 (Ph), 128.76 (Ph), 127.26 (Ph), 126.50 (Ph), 126.01 (Ph), 121.22 (Ph), 47.70 (C4), 44.68 (C3), 24.56 (C6). Anal. calcd. for $C_{17}H_{14}NO_2Br$: C, 59.32; H, 4.10; N, 4.07; Found: C, 59.22; H, 4.03; N, 3.97.

1-(4-Carboxyphenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**10**, $C_{18}H_{15}NO_4$). White solid; Yield: 61%; mp: 173.5–174.7 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1783$ (C=O), 1710 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta|$ ppm = 13.15 (bs, 1H,–COOH), 8.09 (d, *J* = 10 Hz, 2H, –C₆H₄–), 7.54–7.28 (m, 7H, –C₆H₅ and N–C₆H₄–), 3.21 (ABq, 2H, $\Delta v_{AB} = 12.65$ Hz, *J* = 18Hz, – CH₂–), 1.76 (s, 3H, –CH₃); ¹³C NMR (50 MHz, DMSO): $|\delta|$ ppm = 179.85 (C2), 174.44 (C5), 166.76 (–COOH), 142.31 (Ph), 136.27 (Ph), 130.68 (Ph), 130.02 (Ph), 128.85 (Ph), 127.36 (Ph), 127.25 (Ph), 125.99 (Ph), 47.81 (C4), 44.65 (C3), 24.58 (C6). Anal. calcd. for C₁₈H₁₅NO₄: C, 69.89; H, 4.89; N, 4.53; Found: C, 69.72; H, 4.73; N, 4.46.

1-(4-Cyanophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**11**, $C_{18}H_{14}N_2O_2$). White solid; Yield: 58%; mp: 93.9–95.3 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1784 \text{ (C=O)}, 1713 \text{ (C=O)}; {}^{1}\text{H} \text{ NMR} (200 \text{ MHz}, DMSO): }|\delta| \text{ ppm} = 8.01 \text{ (d, } J = 8 \text{ Hz, } 2\text{ H, } -C_{6}H_{4} - \text{)}, 7.63 \text{ (d, } J = 10 \text{ Hz, } 2\text{ H, } -C_{6}H_{4} - \text{)}, 7.55-7.28 \text{ (m, 5H, } -C_{6}H_5\text{)}, 3.21 \text{ (ABq, 2H, } \Delta v_{AB} = 12.65 \text{ Hz, } J = 18\text{Hz, } -CH_2 - \text{)}, 1.77 \text{ (s, 3H, } -CH_3\text{)}; {}^{13}\text{C} \text{ NMR} (50 \text{ MHz, } DMSO): }|\delta| \text{ ppm} = 179.61 \text{ (C2), } 174.17 \text{ (C5), } 142.18 \text{ (Ph), } 136.51 \text{ (Ph), } 133.08 \text{ (Ph), } 128.80 \text{ (Ph), } 127.34 \text{ (Ph), } 128.05 \text{ (Ph), } 126.01 \text{ (Ph), } 118.35 \text{ (}-CN\text{)}, 111.09 \text{ (Ph), } 47.81 \text{ (C4), } 44.62 \text{ (C3), } 24.61 \text{ (C6). Anal. calcd. for } C_{18}H_{14}N_2O_2: C, 74.47; \text{ H, } 4.86; \text{ N, } 9.65; \text{ Found: } C, 74.39; \text{ H, } 4.79; \text{ N, } 9.67.$

1-(4-Nitrophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (**12**, $C_{17}H_{13}N_2O_4$). White solid; Yield: 60%; mp: 106.9–108.1 °C; FT-IR (KBr): $|v| \text{ cm}^{-1} = 1773 \text{ (C=O)}$, 1705 (C=O); ¹H NMR (200 MHz, DMSO): $|\delta| \text{ ppm} = 7.95 \text{ (d, } J = 8 \text{ Hz, } 2H, -C_6H_4 -), 7.71 \text{ (d, } J = 10 \text{ Hz, } 2H, -C_6H_4 -), 7.55-7.27 \text{ (m, } 5H, -C_6H_5), 3.23 \text{ (ABq, } 2H, <math>\Delta v_{AB} = 12.65 \text{ Hz, } J = 18\text{ Hz, } -CH_2 -), 1.85 \text{ (s, } 3H, -CH_3); ^{13}C NMR (50 \text{ MHz, } DMSO): <math>|\delta| \text{ ppm} = 179.61 \text{ (C2)}, 174.17 \text{ (C5)}, 142.15 \text{ (Ph)}, 138.05 \text{ (Ph)}, 128.82 \text{ (Ph)}, 128.21 \text{ (Ph)}, 127.37 \text{ (Ph)}, 128.05 \text{ (Ph)}, 126.03 \text{ (Ph)}, 112.42 \text{ (Ph)}, 47.86 \text{ (C4)}, 44.61 \text{ (C3)}, 24.60 \text{ (C6)}. Anal. calcd. for <math>C_{17}H_{13}N_2O_4$: C, 66.00; H, 4.24; N, 9.06; Found: C, 59.94; H, 4.26; N, 9.09.

Table S1. Long-frequencies UV absorption maxima of 1-aryl-3-methyl-3-pheylpyrrolidine-2,5-diones **1–12** in ethanol and Hammett constants for corresponding substituents.

Comp. No.	1	2	3	4	5	6	7	8	9	10	11	12
$v_{\rm max} \times 10^{-3} / {\rm cm}^{-1}$	43.48	43.48	45.87	48.31	46.30	44.44	47.62	43.48	47.62	41.67	41.32	36.63
$\sigma_{ m p/m}$	-0.37	-0.27	-0.17	0.00	0.06	0.23	0.37	0.23	0.39	0.45	0.66	0.78

No	Substituents	δ/p	pm
NO.	Substituents	C2	C5
1	4-OH	0.30	0.31
2	4-OCH ₃	0.21	0.22
3	4-CH ₃	0.05	0.05
4	Н	180.12	174.72
5	4-F	-0.02	-0.04
6	4-Cl	-0.22	-0.25
7	3-Cl	-0.30	-0.35
8	4-Br	-0.11	-0.15
9	3-Br	-0.30	-0.34
10	4-COOH	-0.27	-0.28
11	4-CN	-0.51	-0.55
12	4-NO ₂	-0.51	-0.55

Table S2. ¹³C NMR chemical shifts (δ /ppm) of the investigated succinimides.

Table S3. Electronic energies (E_{HF}) and ZPE corrected energies (E_{ZPE}) in a.u., relative energies (E_R) in kcal/mol and the statistical Boltzmann distribution weighted values (ω) of all isomers for compound **4** obtained with B3LYP and M06-2X methods and 6-311G(d,p) basis set.

Conf.						B3LYP						
		Vacuum			Ethanol				DMSO			
	Energ	gy, kcal/mol		ω	Energy, kcal/mol			ω	Energ	y, kcal/mol		ω
	E _{HF}	Ezpe	ER		E _{HF}	Ezpe	ER		E _{HF}	Ezpe	ER	
I	-862.292747	-862.012164	0.02	35.3	-862.305019	-862.024885	0.15	22.2	-862.305319	-862.025215	0.15	22.2
П	-862.292075	-862.011389	0.51	15.6	-862.305248	-862.025033	0.05	25.9	-862.305575	-862.025370	0.05	26.2
III	-862.292670	-862.012202	0	36.7	-862.305021	-862.024943	0.11	23.6	-862.305319	-862.025249	0.13	23.1
IV	-862.291781	-862.011169	0.65	12.4	-862.305242	-862.025118	0	28.3	-862.305575	-862.025450	0	28.5
						M06-2X						
I	-861.944531	-861.660608	0.16	23.9	-861.957569	-861.674089	0.49	16.2	-861.957887	-861.674422	0.48	16.2
II	-861.944911	-861.660861	0	31.1	-861.958511	-861.674864	0	36.5	-861.958832	-861.675192	0	36.4
III	-861.944588	-861.660724	0.09	27.0	-861.957522	-861.674065	0.50	15.7	-861.957828	-861.674373	0.51	15.3
IV	-861.944568	-861.660342	0.33	18.0	-861.958265	-861.674728	0.09	31.6	-861.958595	-861.675074	0.07	32.1
E - E	(i) E (0) E		roctor	lonor	av of most stab	lo conformor						

 $E_{R} = E_{ZPE}(i) - E_{ZPE}(0); E_{ZPE}(0) - ZPE$ corrected energy of most stable conformer

Table S4. Energy of HOMO and LUMO orbitals, and HOMO-LUMO energy gaps (eV) obtained with B3LYP and M06-2X calculation for the investigated succinimides in vacuum, ethanol and DMSO

					B3LYP				
		Vakuum			Etanol			DMSO	
	<i>Е</i> _{НОМО} / eV	E _{LUMO} / eV	Δ <i>Ε</i> / eV	<i>Е</i> _{НОМО} / eV	E _{LUMO} / eV	Δ <i>Ε</i> / eV	<i>Е</i> _{НОМО} / eV	E _{LUMO} / eV	Δ <i>Ε</i> / eV
1	-6.24	-0.83	-5.40	-6.52	-0.89	-5.63	-6.54	-0.90	-5.65
2	-6.14	-0.79	-5.34	-6.43	-0.88	-5.55	-6.44	-0.89	-5.55
3	-6.57	-0.84	-5.74	-6.90	-0.91	-5.99	-6.88	-0.89	-5.98
4	-6.82	-0.89	-5.93	-7.01	-0.91	-6.09	-7.01	-0.92	-6.09
5	-6.79	-0.98	-5.81	-7.00	-0.94	-6.06	-7.00	-0.94	-6.06
6	-6.80	-1.11	-5.69	-7.00	-1.13	-5.86	-7.00	-1.13	-5.87
7	-6.94	-1.13	-5.81	-7.02	-1.16	-5.87	-7.03	-1.15	-5.88
8	-6.74	-1.11	-5.63	-6.95	-1.14	-5.81	-6.94	-1.15	-5.78
9	-6.84	-1.12	-5.72	-7.01	-1.15	-5.86	-7.01	-1.15	-5.86
10	-7.10	-1.76	-5.34	-7.04	-1.90	-5.14	-7.04	-1.91	-5.13
11	-7.22	-1.87	-5.35	-7.05	-1.94	-5.12	-7.05	-1.94	-5.11
12	-7.27	-2.67	-4.60	-7.06	-2.89	-4.17	-7.06	-2.90	-4.16
					M06-2X				
1	-7.49	0.12	-7.61	-7.78	0.14	-7.92	-7.79	0.14	-7.93
2	-7.39	0.16	-7.56	-7.71	0.10	-7.81	-7.71	0.08	-7.79
3	-7.80	0.08	-7.88	-8.10	0.01	-8.11	-8.11	0.01	-8.13
4	-8.05	0.02	-8.07	-8.35	-0.04	-8.30	-8.35	-0.04	-8.31
5	-8.04	-0.03	-8.01	-8.30	0.01	-8.31	-8.31	0.01	-8.32

					B3LYP				
		Vakuum			Etanol			DMSO	
	<i>Е</i> _{НОМО} / eV	E _{LUMO} / eV	Δ <i>Ε</i> / eV	<i>Е</i> _{НОМО} / eV	E _{LUMO} / eV	Δ <i>Ε</i> / eV	<i>Е</i> _{номо} / eV	E _{LUMO} / eV	Δ <i>Ε</i> / eV
6	-8.04	-0.20	-7.84	-8.27	-0.25	-8.02	-8.31	-0.16	-8.15
7	-8.19	-0.21	-7.98	-8.42	-0.26	-8.16	-8.43	-0.26	-8.16
8	-7.98	-0.11	-7.87	-8.20	-0.27	-7.93	-8.21	-0.27	-7.93
9	-8.11	-0.23	-7.88	-8.35	-0.27	-8.08	-8.36	-0.28	-8.08
10	-8.32	-0.76	-7.56	-8.44	-0.93	-7.51	-8.44	-0.94	-7.50
11	-8.46	-0.92	-7.54	-8.46	-0.99	-7.47	-8.47	-0.96	-7.51
12	-8.63	-1.51	-7.12	-8.48	-1.73	-6.75	-8.47	-1.73	-6.74

Table S5. Evaluation of drug candidates

Ne	Molecular		Hydroge	en bonds	Detetekle kende	Deler surface area Å20
NO.	weight	$\log P^{*}$	Donors ^a	Acceptors ^b	Rotatable bonds	Polar surface area, A ⁻²
1	281.31	2.09	1	4	2	57.61
2	295.34	2.63	0	4	3	46.61
3	279.34	3.02	0	3	2	37.38
4	265.31	2.57	0	3	2	37.38
5	283.30	2.73	0	3	2	37.38
6	299.76	3.25	0	3	2	37.38
7	299.76	3.23	0	3	2	37.38
8	344.21	3.38	0	3	2	37.38
9	344.21	3.36	0	3	2	37.38
10	309.32	2.48	1	5	3	74.68
11	290.32	2.33	0	4	2	61.17
12	310.31	2.53	0	6	3	83.20
Methsuximide	203.24	1.34	0	3	1	37.38
Ideal compound	<500	<5	<5	<10	<8	<140

^aA donor indicates any O–H or N–H group; ^bAn acceptor indicates any O or N including those in donor groups. ^cParameters calculated from program Molinspiration.

Table S6. PASS prediction of the investigated succinimides (1–12). Pa and Pi represent probabilities that investigated molecule can be active and inactive, respectively (Note: Only the results with Pa > 0.7 are presented)

1-(4-Hydroxyphenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (1)

Ра	Pi	Receptors
0.853	0.023	CYP2C12 substrate
0.796	0.020	Antiseborrheic
0.788	0.028	Testosterone 17beta-dehydrogenase (NADP+) inhibitor
0.733	0.004	Tetrahydroxynaphthalene reductase inhibitor
0.730	0.010	27-Hydroxycholesterol 7alpha-monooxygenase inhibitor
0.718	0.016	Glutathione thiolesterase inhibitor
0.731	0.054	Aspulvinone dimethylallyltransferase inhibitor
0.721	0.061	Ubiquinol-cytochrome-c reductase inhibitor
1-(4-Meth	oxyphenyl)-3	-methyl-3-phenylpyrrolidine-2,5-dione (2)
Pa	Pi	Receptors
0.764	0.044	Aspulvinone dimethylallyltransferase inhibitor
0.735	0.038	Gluconate 2-dehydrogenase (acceptor) inhibitor
0.721	0.053	CYP2C12 substrate
1-(4-Meth	ylphenyl)-3-	nethyl-3-phenylpyrrolidine-2,5-dione (3)
Pa	Pi	Receptors
0.783	0.030	Testosterone 17beta-dehydrogenase (NADP+) inhibitor
0.735	0.010	27-Hydroxycholesterol 7alpha-monooxygenase inhibitor
0.712	0.046	CYP2J substrate
0.717	0.054	CYP2C12 substrate

Pa	Pi	Receptors
0.823	0.020	Testosterone 17beta-dehydrogenase (NADP+) inhibitor
0.806	0.005	27-Hydroxycholesterol 7alpha-monooxygenase inhibitor
0.746	0.008	Anticonvulsant
0.731	0.005	CYP2A8 substrate
0.740	0.050	CYP2C12 substrate
0.703	0.015	Phosphatidylcholine-retinol O-acyltransferase inhibitor
0.727	0.042	CYP2J substrate
0.705	0.022	Lysase inhibitor

1-phenyl-3-methyl-3-phenylpyrrolidine-2,5-dione (4)

1-(4-Fluorophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (5)

Pa	Pi	Receptors
0.748	0.008	Anticonvulsant

1-(4-Chlorophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (6)

Pa	Pi	Receptors
0.830	0.003	CYP2A8 substrate
0.809	0.005	Anticonvulsant
0.803	0.005	27-Hydroxycholesterol 7alpha-monooxygenase inhibitor
0.764	0.048	Phobic disorders treatment
0.734	0.039	CYP2J substrate
0.709	0.021	5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase inhibitor
0.704	0.034	Glycosylphosphatidylinositol phospholipase D inhibitor

1-(3- Chlorophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (7)

Pa	Pi	Receptors
0.835	0.005	Anticonvulsant
0.809	0.004	CYP2A8 substrate
0.774	0.007	27-Hydroxycholesterol 7alpha-monooxygenase inhibitor
0.734	0.027	Glycosylphosphatidylinositol phospholipase D inhibitor
0.731	0.062	Phobic disorders treatment
0.706	0.048	CYP2J substrate

1-(4-Bromophenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (8)

Pa	Pi	Receptors
0.778	0.006	Anticonvulsant
1-(3- Brom	ophenyl)-3-r	nethyl-3-phenylpyrrolidine-2,5-dione (9)

D-	0.	De construire		
1-(4-Carboxyphenyl)-3-methyl-3-phenylpyrrolidine-2,5-dione (10)				
0.807	0.005	Anticonvulsant		
Pa	Pi	Receptors		

	Pa	Pi	Receptors
	0.909	0.005	Testosterone 17beta-dehydrogenase (NADP+) inhibitor
	0.848	0.004	Phosphatidylcholine-retinol O-acyltransferase inhibitor
	0.825	0.006	Pullulanase inhibitor
	0.823	0.005	Glutathione thiolesterase inhibitor
	0.823	0.005	Ribulose-phosphate 3-epimerase inhibitor
	0.803	0.004	Electron-transferring-flavoprotein dehydrogenase inhibitor
	0.798	0.004	Cholestanetriol 26-monooxygenase inhibitor
	0.799	0.006	Creatininase inhibitor
	0.806	0.017	Alkenylglycerophosphocholine hydrolase inhibitor
	0.798	0.019	Antieczematic
	0.787	0.009	Fusarinine-C ornithinesterase inhibitor
	0.781	0.004	Arylalkyl acylamidase inhibitor
	0.772	0.004	Phenol O-methyltransferase inhibitor
	0.767	0.005	1,4-Lactonase inhibitor
1			

Pa	Pi	Receptors
0.772	0.011	5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase inhibitor
0.763	0.004	Ferredoxin-NAD+ reductase inhibitor
0.763	0.004	Naphthalene 1,2-dioxygenase inhibitor
0.775	0.017	Taurine dehydrogenase inhibitor
0.768	0.011	Glucan endo-1,6-beta-glucosidase inhibitor
0.761	0.007	3-Hydroxybenzoate 6-monooxygenase inhibitor
0.760	0.009	UDP-N-acetylglucosamine 4-epimerase inhibitor
0.756	0.006	I-glutamate oxidase inhibitor
0.773	0.025	Chlordecone reductase inhibitor
0.757	0.010	NADPH-cvtochrome-c2 reductase inhibitor
0.751	0.007	Gluconate 5-dehydrogenase inhibitor
0.756	0.016	Glutamyl endonentidase II inhibitor
0.750	0.010	Bisnhosnhoglycerate nhosnhatase inhibitor
0.748	0.008	Polyamine-transporting ATPase inhibitor
0 744	0.005	Chenodeoxycholoyltaurine hydrolase inhibitor
0.740	0.005	Tryptophanamidase inhibitor
0 741	0.008	Methylamine-glutamate N-methyltransferase inhihitor
0.741	0.010	
0.740	0.010	Pterin deaminase inhibitor
0.740	0.003	
0.735	0.004	
0.730	0.012	Aikane 1-monooxygenase minibitor
0.727	0.004	Debudre L gulenate decarboxylase inhibitor
0.755	0.018	Spermiding debudrogenase inhibitor
0.724	0.007	Spermane denyarogenase inhibitor
0.719	0.008	(D) Dentalestana debudrosanosa (flavin) inkihitan
0.715	0.005	(R)-Pantolactone denydrogenase (flavin) innibitor
0.717	0.012	2-Hydroxymuconate-semialdenyde hydrolase innibitor
0.709	0.004	
0.708	0.005	Opheline kinase inhibitor
0.708	0.005	l'aurocyamine kinase innibitor
0.708	0.006	Aminobutyraldehyde dehydrogenase inhibitor
0.707	0.005	Long-chain-aldehyde dehydrogenase inhibitor
0.713	0.013	2-Hydroxyquinoline 8-monooxygenase inhibitor
0.728	0.028	Sugar-phosphatase inhibitor
0.712	0.012	N-acetylneuraminate 7-O(or 9-O)-acetyltransferase inhibitor
0.705	0.007	NADH kinase inhibitor
0.704	0.008	Gamma-guanidinobutyraldehyde dehydrogenase inhibitor
0.706	0.009	Mitochondrial processing peptidase inhibitor
0.702	0.007	Peptide alpha-N-acetyltransferase inhibitor
0.713	0.022	Sphinganine kinase inhibitor
0.713	0.026	Glutamate-5-semialdehyde dehydrogenase inhibitor
0.715	0.063	Ubiquinol-cytochrome-c reductase inhibitor
1-(4-Cvan	onhenvl)-3-m	ethyl-3-phenylpyrrolidine-2 5-dione (11)
Pa	Pi	Recentors
0.864	0.020	
0.804	0.020	Neurotransmitter untake inhibitor
0.770	0.005	
1-(4-Nitro	phenyl)-3-me	thyl-3-phenylpyrrolidine-2,5-dione (12)
Pa	Pi	Receptors
0.770	0.013	Lysase inhibitor
0.792	0.036	Ubiquinol-cytochrome-c reductase inhibitor
0.766	0.011	Fusarinine-C ornithinesterase inhibitor
0.759	0.012	Glucan endo-1.6-beta-glucosidase inhibitor
0.721	0.009	Anticonvulsant
0.701	0.044	Acrocylindropepsin inhibitor
0.701	0.044	Chymosin inhibitor
0.701	0.044	Saccharopensin inhibitor

Pa	Pi	Receptors
0.909	0.004	Anticonvulsant
0.847	0.003	CYP2A8 substrate
0.823	0.020	Testosterone 17beta-dehydrogenase (NADP+) inhibitor
0.772	0.014	Nicotinic alpha2beta2 receptor antagonist
0.745	0.005	4-Nitrophenol 2-monooxygenase inhibitor
0.738	0.005	CYP2A2 substrate
0.767	0.044	CYP2C12 substrate
0.740	0.023	Nicotinic alpha6beta3beta4alpha5 receptor antagonist
0.727	0.010	27-Hydroxycholesterol 7alpha-monooxygenase inhibitor
0.703	0.015	Phosphatidylcholine-retinol O-acyltransferase inhibitor
0.709	0.047	CYP2J substrate

Parent compound: Methsuximide

Figure S1. Normalized UV absorption spectra of investigated compounds in ethanol.

Figure S2. The potential energy scans for rotation of 3-phenyl group, in the vacuum (red) and ethanol (blue) done by B3LYP/6-311G(d,p) method (N-phenyl group torsion angle of ~ 136°).

Figure S4. The ¹H NMR spectrum of **4** recorded in DMSO-d₆.

Figure S5. The ¹³C NMR spectrum of **4** recorded in DMSO-d₆.

000