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Abstract 

Novel succinimide derivatives were synthesized from 3-methyl-3-phenylsuccinic acid and 

substituted anilines under solvent-free conditions by using microwave irradiation. All obtained 

compounds were characterized by ultraviolet (UV), Fourier-transform infrared (FT-IR), 1H and 
13С nuclear magnetic resonance (NMR) spectroscopy as well as by elemental analysis. The 

influence of the substituent electronic effects on spectroscopic data was analyzed by applying 

the Hammett equation. Moreover, a detailed interpretation and comparison of experimentally 

obtained and theoretically calculated FT-IR, UV and NMR spectra was performed. Density 

functional theory (DFT) calculated data of the investigated succinimides were obtained and 

analyzed in order to determine their structural, spectroscopic and electronic properties. 

Furthermore, ADMET factor profiling and in-silico prediction of potential biological activities of 

novel succinimide derivatives have been performed. 
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1. INTRODUCTION 

Nitrogen-containing five- and six-membered heterocycles are ubiquitous in nature. These compounds are common 

constituents of natural products as well as of medicinally relevant structures and, as such, maintain significance in the 

research community over the years. Among them, succinimides (pyrrolidine-2,5-diones) represent renowned 

pharmacophores in drug discovery due to their versatile biological activity. Derivatives of this cyclic imide are used as 

anticonvulsant agents [1-3], among which ethosuximide, methsuximide, and phensuximide are important commercial 

drugs [4,5]. Substituted succinimides are recognized as promising antitumor [6], antitubercular [7], hypotensive [8], 

antimicrobial and antioxidant agents [9-11], and are used in treatments of glaucomas [12] and tremors [13]. The 

succinimide ring has been extensively studied in peptides and proteins since it is a cyclic intermediate in post-

translational modifications of asparaginyl deamidation and aspartyl isomerization and thus it is responsible for protein 

aging [14-16]. Some of these succinimide derivatives represent important intermediates in the synthesis of drugs [17,18] 

and other organic compounds [19,20]. Chromones, naphthoquinones, and xanthones bearing succinimide are shown to 

be highly cytotoxic comparable to activity of the anticancer agent doxorubicin [21]. Besides their significant biological 

role, they are, also, used as dopants necessary for generation of blue phases, which are considered to be the next-
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generation of fast liquid crystals displays [22], as well as an efficient and recyclable catalyst in form of succinimide 

sulfonic acid [23]. They also found applications in water-soluble reactive copolymers and polymers [24,25]. 

The initial analysis in drug discovery includes determination of quantitative structure-activity (properties) relationships 

(QSA(P)R) and ADME-Tox (refers to Absorption, Distribution, Metabolism, Excretion, and Toxicology) analysis, whereas, for 

succinimide derivatives, lipophilicity is used as an adequate property [26-29]. The resulting candidates N-phenyl substituted 

succinimides appear promising in research and development of new antiepileptic drugs. 

Due to wide applications of succinimide derivatives, estimation and determination of their structure, and relations to 

the corresponding spectral properties is of utmost importance for understanding of physico-chemical properties [30-32]. 

The idea of this study was to create derivatives of the commercial drug methsuximide (celontin) in which the N-methyl 

group would be replaced by 3- and 4-substituted phenyl groups (Fig. 1). Thus, twelve novel 1-aryl-3-methyl-3-phe-

nylpyrrolidine-2,5-diones were synthesized and characterized. Quantitative determination of substituent effects on the 

ultraviolet (UV), Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra has been performed 

using a linear free-energy relationship (LFER) concept. Moreover, we have also performed a comparative study between 

theoretically calculated properties and experimentally obtained results. Prediction of potential biological activities of 

the investigated succinimides is tested using the in-silico ADMET factor profiling. 

2. MATERIALS AND METHODS 

2.1. Chemistry 

All chemicals used during the synthesis have been purchased from Sigma-Aldrich Chemicals (Sigma-Aldrich Corp., St. 

Louis, MO, USA) or Merck Chemicals (Merck KGaA, Darmstadt, Germany), as follows: acetophenone (≥98%, Sigma-Aldrich), 

ethyl cyanoacetate (≥98%, Merck KGaA), ammonium acetate (≥98%, Sigma-Aldrich), benzene (≥99.8%, Merck KGaA), 

potassium cyanide (97%, Merck KGaA), ethanol (95 %, Sigma-Aldrich), hydrochloric acid (37%, Sigma-Aldrich),  

4-aminophenol (≥98%, Sigma-Aldrich), 4-methoxyaniline (99%, Sigma-Aldrich), 4-methylaniline (99.6%, Sigma-Aldrich), 

aniline (≥99.5%, Sigma-Aldrich), 4-fluoroaniline (99%, Sigma-Aldrich), 4-chloroaniline (98%, Sigma-Aldrich), 3-chloroaniline 

(99%, Sigma-Aldrich), 4-bromoaniline (≥99%, Sigma-Aldrich), 3-bromoaniline (98%, Sigma-Aldrich), 4-aminobenzoic acid 

(99%, Sigma-Aldrich), 4-aminobenzonitrile (98%, Sigma-Aldrich), 4-nitroaniline (≥99%, Sigma-Aldrich), DMSO ̶ d6 (≥99%, 

Sigma-Aldrich), ethanol (≥99.8%, Sigma-Aldrich). Microwave synthesis has been completed in Anton PaarMonowave 300 

(Ashland, VA, USA) microwave reactor. FT-IR spectra of the investigated derivatives processed in the form of KBr pellets 

have been determined using an ABB BomemMB Series 100 Fourier transform infrared (FT-IR) spectrophotometer (Quebec 

City, Canada). Nuclear magnetic resonance (NMR) spectra have been performed on a Bruker AC 250 spectrometer (Bruker, 

Germany) at 200 MHz for the 1H NMR and 50 MHz for the 13C NMR spectra. All NMR spectra of investigated derivatives 

have been recorded at room temperature in deuterated dimethyl sulfoxide (DMSO-d6) using tetramethylsilane (TMS) as 

an internal standard. Elemental analyses have been performed using an Elemental Vario EL III microanalyzer (Elementar, 

Germany). Ultraviolet absorption spectra of the compounds in ethanol were recorded in the range 200–400 nm using 

Shimadzu 1700 UV-Vis spectrophotometer (Shimadzu, Japan). 

2.2. Synthesis of 1-aryl-3-methyl-3-phenylpyrrolidine-2,5-diones (1–12) 

All explored succinimide derivatives have been synthesized using 3-methyl-3-phenyl succinic acid and different 

substituted anilines under solvent-free conditions by microwave irradiation (MW). The corresponding succinic acid has 

been synthesized by previously reported procedures (Fig. 1) [33-35]. 

Generally, the mixture of the synthesized 3-methyl-3-phenyl succinic acid (1 mmol) and substituted aniline 

(1.1 mmol) have been stirred in a microwave reactor under solvent-free conditions (V = 25 mL, t = 15 min, T = 180 oC). 

The mixture was cooled and subsequently dissolved in ethyl acetate, consecutively washed with 10 mL of 5 % HCl(aq), 

10 mL of saturated NaHCO3(aq), and two times with 10 mL of distilled water. The organic layer was dried over sodium 

sulfate and the solvent was evaporated under reduced pressure. The crude product was recrystallized from acetone 

and chemical structures of the newly synthesized 1-aryl-3-methyl-3-phenylpyrrolidine-2,5-diones (1–12) have been 
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confirmed by determination of the melting point, FT-IR, 1H and 13C NMR spectroscopy, and elemental analysis. The 

characterization data are shown in Supplementary material (Section: Characterization).  

2.3. Computational details 

The density functional theory (DFT) calculations of the investigated dyes have been performed by using the 

“Gaussian 09 program” package (Gaussian Inc., Wallingford, CT, USA) [36] with B3LYP [36] and M06-2X [38] methods 

and 6-311G(d,p) basis set. Default convergence criteria were used without any constraint on the geometry. The stability 

of the optimized geometry was verified by frequency calculations, which gave real values for all the obtained 

frequencies. Optimized structural parameters have been utilized in the calculations of vibrational frequencies, electronic 

properties and isotropic chemical shifts. 

Harmonic frequencies are calculated by the B3LYP/6-311G(d,p) method and then scaled by 0.9668 [39]. Assignments 

of the calculated wavenumbers are supported by the animation option of the GaussView 5.0 graphical interface of 

Gaussian programs [40], which performed a visual presentation of the shape of vibration modes. 

Nuclear magnetic resonance (NMR) chemical shifts calculations were performed by using the Gauge-Independent 

Atomic Orbital (GIAO) method, at the same levels of theory in DMSO as a solvent. The 1H and 13C isotropic chemical 

shifts are listed in relation to the corresponding values for TMS. The solvent effect was introduced by the Conductor 

Polarizable Continuum Model (CPCM) [41]. Frontier Molecular Orbitals (FMO) analysis has been performed in an 

attempt to clarify the charge transfer within investigated succinimides. 

3. RESULTS AND DISCUSSION 

3.1. Synthetic pathway and characterization analysis 

1-Aryl-3-methyl-3-phenylsuccinimides (1–12), investigated here, have been prepared according to the synthetic 

procedure presented in Figure 1 [33-35]. The last step represents modification of standard condensation procedures for 

closure of the succinimide ring and includes the use of MW radiation under solvent-free conditions, which significantly 

shortened the reaction time (15 min vs. 3 h of conventional heating) and improved yields. 
 

 
Figure 1.The synthetic route of novel 1-aryl-3-methyl-3-phenylsuccinimides. (i) NH4OAc, C6H6, reflux, 6 h; (ii); KCN, 50% ethanol, 
reflux, heated until a clear solution was formed (iii); 12 M HCl, reflux, 12 h (iv) substituted aniline, MW irradiation, 15 min, 180 °C 
 

FT-IR spectra analysis of the investigated compounds revealed two characteristic stretching absorptions of carbonyl 

groups (C=O) originating from the succinimide ring in the regions 1773–1784 cm–1 (low intensity) and 1684–1709 cm–1 

(strong intensity). All necessary C–H stretching of aromatic rings and the aliphatic chain were observed at their 
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characteristic absorption positions. 1H NMR and 13C NMR spectra unequivocally confirmed structures of the investigated 

compounds. From the 1H NMR spectrum, characteristic aromatic protons, which belong to 3- or 4-substituted phenyl 

group, as well as aromatic protons from the phenyl group in the position 3 of the succinimide ring, were observed and 

all their positions are presented in the Supplementary data. Aromatic protons in p-substituted phenyl ring (for strong 

electron-acceptors and electron-donating groups) exhibit peaks as two doublets, while for unsubstituted and  

m-substituted phenyl group multiplet signals have been observed. Moreover, aromatic protons from the phenyl group 

in position 3 of the succinimide ring produced peaks as multiplet signals, which are overlapped with peaks which 

originate from the p(m)-substituted phenyl ring with moderate or weak substituents electronic effects. Corresponding 

methyl protons (3-methyl group on the succinimide ring) are observed as one strong singlet in the range from 1.77 to 

1.73 ppm. Moreover, protons from the methylene group in the succinimide ring (–CH2–) is observed as a characteristic 

AB quartet in the range 3.23–3.14 ppm with the coupling constant JAB= 18 Hz. Additionally, 13C NMR spectra of the 

investigated compounds exhibited all distinctive signals at the appropriate positions (Supplementary material). 

3.2. Electronic effects of substituents on the spectroscopic data (Hammett's analysis) 

As previously observed [32], the main influence on UV absorption wavenumbers is manifested through the electronic 

nature of the substituents at the phenyl ring attached to nitrogen on the succinimide core. Also, almost negligible effect of 

the solvent polarity and their other characteristics were observed on the changes of UV absorption positions [32]. Due to 

that and only with the aim to get an insight and confirm the strength of electronic effects of substituents on the UV-Vis 

absorption maxima, the UV absorption spectra of the investigated 1-aryl-3-methyl-3-phenylsuccinimides were recorded in 

ethanol in the range of 200–400 nm (Table S1, Fig. S1, Supplementary material). From the Figure S1 it can be observed that 

the UV absorption wavenumbers strongly depend on the nature of substituent electronic effects. As expected and 

previously reported [32], all substituents cause bathochromic band shifts relative to the unsubstituted compound 4. The 

weak electron-donating methyl group induces the smallest positive changes on UV spectra, while the strongest electron-

withdrawing –NO2 group exhibits the largest bathochromic shift compared to the unsubstituted compound 4. Shifts of the 

UV absorption bands are assigned to different π → π* transitions involving the corresponding π-electron system of the 

investigated succinimides. The π-delocalization is essentially a result of transmission of π-electrons from the phenyl ring, 

provoked by electronic effects of substituents in the p- or m-position, to carbonyl groups of the succinimide ring. These 

bathochromic shifts of UV maxima, which are observed for all investigated compounds, support the evidence that a π →π* 

transition is liable for these UV absorption shifts. Moreover, planarity of a molecule is one of the main features, which 

highly influences transmission of the resonance effect through the molecule and therefore significantly influences the 

contribution of the electron density delocalization to the UV absorption of each compound. 

UV absorption maxima and the transmission of electronic effects were analyzed by a linear free-energy relationship 

(LFER) applying the simple Hammett equation [42]: 

s =   + hs  (1) 

where s is the absorption wavenumber (νmax) as the substituent-dependent value,  expresses the sensitivity of νmax to 

the substituent effects (proportionality constant),  measures the electronic effect of substituents (substituent 

constant), and h is the intercept (i.e., describes νmax of the unsubstituted member of the series). 

The plot νmax vs. the Hammett substituent constants p/m [43] exhibits deviations from the Hammett linearity, 

therefore the electronic effect of the electron-donating and electron-accepting substituents are taken into 

consideration separately (Fig. 2). For the electron-donating substituents, the  value is significantly higher than 1, 

demonstrating high sensitivity of UV maxima toward these substituents. Also, the values of   >> 1 indicate that the 

negative charge is built (or the positive charge is lost) on the succinimide ring, which is completely in agreement with 

possible resonance structures of these molecules with electron-donating substituents, where free electrons from 

substituents are shifted forward the imide part of the succinimide core. Moreover, the same trend in sensitivity is 

obtained for electron-accepting substituents, but the sign of   value indicates completely opposite effects than those 

described above. The value of   << 0 is obtained for electron-accepting substituents indicating formation of positive 

charges or reduction of negative charges on the chromophore succinimide ring. 
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Figure 2. Experimental data and best linear fits of νmax vs. σp/m for investigated 1-aryl-3-methyl-3-phenylpyrrolidine-2,5-diones 
 

Further, 13C NMR chemical shifts for the two carbonyl atoms (C=O, C2, and C5) in the succinimide core (Fig. 1) for all 

1-aryl-3-methyl-3-phenylsuccinimides were analyzed by LFER using Eq. (1), with the aim to get an insight into the 

quantitative assessment of substituent effects on the NMR data. All investigated 13C NMR chemical shifts are presented 

in Table S2 (Supplementary material) as the substituent chemical shifts (SCS, δ) compared to the unsubstituted 

compound 4. From the Table S2 it can be observed that electron-donating substituents cause downfield shifts, while 

electron-accepting substituents induce upfield shifts. Almost negligibly better correlations of 13C SCSs for investigated 

carbonyl atoms (Table 1) are obtained with p/m substituent constants as compared to those with electrophilic 

substituent constants ( p
+) (Eq.(1)). Electronic effects of the substituents did not influence the SCS of the remaining two 

carbon atoms of the succinimide ring. 
 

Table 1. Results of the SCS data correlations according to Eq. (1). 

Parameter  h Ra sb Fc nd 

δC(C2) -0.709 (±0.0387) /e 0.9854 0.0461 335 12 

δC(C5) -0.759 (±0.0434) /e 0.9841 0.0517 306 12 
aCorrelation coefficient; bStandard error of the estimate; cFisher's test; dNumber of compounds included in the correlation; 
eNegligible value with a high standard error. 

 

Values of correlation coefficients, R, from Table 1 show that influences of electronic effects of the substituent on 

the C2 and C5 chemical shifts were not statistically different According to the ρ value, a moderate to small impact of 

substituent electronic effects on the electron density of investigated atoms is observed. the obtained results are entirely 

in accordance with the molecular structure of 1-aryl-3-methyl-3-phenylpyrrolidine-2,5-dione as well as with the 

mechanism of electron density transmission of the substituent electronic effects within the molecule [32]. 

2.3. DFT calculations 

2.3.1. Conformational stability 

A conformational analysis was performed to find all stable conformers of all investigated compounds. 

Conformational changes of the investigated compounds are possible in the position of substituents (methyl and phenyl 

groups) and small changes may be detected in positions 3 and 4 of the succinimide ring. In this work only the positions 

of 3-phenyl groups are investigated in detail. Positions of the N-phenyl group have been investigated in our previous 

work [32], and rotation of the methyl group does not contribute significantly to the energy of investigated systems. For 

a better insight into energy changes connected to rotation of the phenyl group in the position 3, potential energy scans 

(PES) for two possible orientations of the N-phenyl group were performed by the B3LYP/6-311G(d,p) method in vacuum 
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and ethanol. During the calculation, all geometrical parameters were simultaneously relaxed, while the torsion angle of 

the phenyl group in position 3 was varied in steps of 5° from 0–180°. Figure 4 represents the reaction coordinate for 

conformers with the N-phenyl group torsion angle of ~44°, while the reaction coordinate for the torsion angle of ~ 136° 

is shown in Figure S2, Supplementary material. 
 

 
Figure 3. Potential energy scans for rotation of the phenyl group in position 3 in vacuum (red) and ethanol (blue) performed by the 
B3LYP/6-311G(d,p) method 

 

Stable positions of the 3-phenyl group are determined with steric effects between other present groups. The 

succinimide ring in investigated molecules is almost planar and only the C3 atom deviates from the plane for no more than 

±6°, while the C4 atom shows a negligible deviation (±3°) but in the opposite direction, and thus the succinimide ring forms 

an unstable envelope conformation. The energetically most important repulsive interaction is between hydrogen atoms of 

CH2 and 3-phenyl groups (see TS-2 in Fig. 3). This interaction is responsible for the effect that while the 3-phenyl group is 

passing over the CH2 group, the succinimide ring must rapidly flip from one envelope conformation to another, which can 

be seen as an irregularity on the reaction coordinate (see the part designated with a red circle in Fig. 3). 

In contrast to the previously studied 1-(4-chlorophenyl)-3-phenylsuccinimide, which does not contain a methyl 

group in the position 3 and shows only one stable position for the 3-phenyl group [30], the compounds studied here 

show that rotation of the 3-phenyl group yields two stable conformers (I and II). The main reason for this may be 

attributed to the additional repulsion between methyl and phenyl groups in the position 3, which is strongest when the 

phenyl group and C3-CH3 bond are in the same plane (see TS-1 in Fig. 3). It must be noted that the overall energy change 

connected to the 3-phenyl group rotation is very small, less than 1.5 kcal mol–1, which signifies that this group is very 

mobile. So, this group can easily adjust its position under the external influence. For comparison, the rotation barrier 

height for rotation of the ethyl group in 1-phenyl-3-ethyl-3-methylpyrrolidine-2,5-dione is ~5.5 kcal mol–1 [44]. 

Also, a significant difference can be observed in Figure 3 in profiles of the reaction coordinates in vacuum and 

ethanol. The most evident difference is in the energy of conformers I and II. The vacuum environment favors the 

conformer I with the 3-phenyl group in the equatorial position, which is in agreement with the common view that the 

sterically bulkiest substituent tends to take this position. Contrary, in a polar solvent (ethanol), conformer I becomes 

less favored. The main reason for such behavior is in dipole moments of conformers. Calculations show that conformers 

I and II in vacuum have dipole moments of 1.456 and 1.575 D, respectively. So, the least polar conformer is the most 

stable one. Calculated dipole moments in ethanol are 1.741 and 1.834 D, respectively, and the conformer II becomes 

the most stable. A polar solvent tends to increase the dipole moment and additionally localizes hydrophobic and 

hydrophilic parts of the molecule, changing the envelope conformation of the succinimide ring, and consequently 
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bringing the phenyl groups into close proximity. Also this occurrence exposes the imide group for better interactions 

with solvent molecules.  

Results show that four conformers are possible for the molecule with a symmetric substituent and eight conformers 

for that with an asymmetric substituent. Complete geometry optimizations of these conformers were performed by B3LYP 

and M06-2X methods with a 6-311G(d,p) basis set in vacuum and two solvents (ethanol and DMSO). According to a 

Boltzmann analysis, all conformers are simultaneously present in the solution at room temperature, so that the calculated 

properties of all conformers are used in the dynamic form (the Boltzmann averaging procedure is applied) for geometry 

correlation studies. In the same time, the most stable geometry of the compound 4 was used for vibrational and NMR 

studies. Geometries of all stable isomers for the compound 4 obtained by using the B3LYP method are shown in Figure 4 

and 5. Calculated energies and statistical Boltzmann distribution weighted values of all stable isomers for the compound 4 

by using B3LYP and M06-2X methods in vacuum, ethanol and DMSO are shown in Table S3 (Supplementary material). 

 

 
Figure 4. Geometries of all stable isomers for the compound 4 obtained by the B3LYP 
method 

 

 
Figure 5. Atom numbering of 
investigated succinimide 4 

2. 3. 2. Vibrational and NMR spectral analyses of the investigated succinimide 4 

2. 3. 2. 1. Vibrational spectral analysis 

The compound 4 was chosen as a representative example of the investigated series of succinimides. A meticulous 

analysis of experimental and calculated infrared spectra of the unsubstituted succinimide 4 was carried out to support 

the structural analysis. Wavenumbers which are the most important for the structure of this compound are presented 

in Table 2. The experimental and calculated spectra are shown in Figure S3 (Supplementary material) and the atom 

numbering scheme is presented in Figure 5.  

Stretching vibrations of C‒H and C‒C aromatic bonds are characteristic for two phenyl moieties in the molecule 4. 

Two broad and weak bands, in the calculated spectrum, at 3102 and 3112 cm−1 are assigned to symmetric stretching 

vibrations of the C‒H group and asymmetric stretching vibrations are at 3084 and 3089 cm−1 with a counterpart in the 

experimental FT-IR spectrum at 2977 cm−1. In-plane bending vibrations of C‒H groups appear in the region  

1050–1595 cm−1 and mix with C‒C stretching as well as bending vibrations of aliphatic methyl and methylene group. The 

out-of-plane bending vibration of C‒H groups in phenyl moieties are observed as intense bands at 652 and 756 cm−1 in 

the FT-IR spectrum while the corresponding calculated values are 695 and 743 cm−1. Stretching vibrations of aromatic 

C‒C bonds are observed at 1599 cm−1 and correlate with calculated values at 1569 and 1589 cm−1. In-plane and out of 

plane bending vibrations of aromatic C‒C groups correlate well, Table 2. 

The most significant bands of the succinimide ring are in the region 1700–1800 cm−1 and belong to stretching 

vibrations of two carbonyl groups. The two carbonyl bond stretching vibrations are combined to produce symmetric 

and asymmetric stretching vibrations. Symmetric stretching vibrations are observed as a sharp and very intense peak at 

1702 cm−1 while asymmetric stretching vibrations are observed as a weak band at 1778 cm−1. Medium intense IR bands 

at 569, 780 and 1123 cm−1 are identified as C=O out-of-plane and in-plane bending vibrations. The corresponding 

theoretical wavenumbers of 564, 787 and 1173 cm−1 are well correlated to the experimental ones. The succinimide ring 
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C–C and C–N stretching vibration modes of the investigated molecule are predicted at 1182 and 1333 cm−1 by the 

B3LYP/6-311G(d,p) method and observed at 1186 and 1293 cm−1 in the FT-IR spectrum. The out-of-plane and in-plane 

bending vibrations of C–C and C–N groups of the succinimide moiety are observed at 876, 932 and 569, 756 cm−1, 

respectively and calculated counterparts are at 859, 985 and 564, 748 cm−1. 

Frequencies of C–H phenyl ring vibrations are found to be higher than those of CH2 and CH3 groups. Also, symmetric 

modes have higher frequencies than the asymmetric ones for the phenyl C–H group, while it is the opposite for CH2 and 

CH3 groups. Calculated symmetric and asymmetric stretching modes for methyl and methylene aliphatic groups are at 

2930, 2956 and 2986, 3020 cm−1, respectively and correlate with the experimental finding at 2901 cm−1. Bands at 1457 

and 1293 cm−1 are attributed to CH2 scissoring and wagging vibrations, respectively. A moderately strong peak at 

1074 cm−1 is assigned to twisting vibrations and two peaks at 569 and 876 cm−1 in the FT-IR spectrum are assigned to 

rocking vibrations of the CH2 group. Symmetric and asymmetric deformation vibration modes of the CH3 group are 

predicted at 1363 and 1478 cm−1, respectively, and observed at 1382 and 1493 cm−1 in the FT-IR spectrum. Methyl 

rocking vibrations of the investigated compound are coupled with in-plane bending vibrations of aromatic C‒H and  

C‒C bonds, in-plane bending vibrations of C‒N‒C as well as with twisting vibrations of the CH2 group and display 

moderately strong peaks at 1050 and 1074 cm−1 in the FT-IR spectrum.  
 

Table 2. The observed FT-IR and calculated (B3LYP/6-311G(d,p)) frequencies for the compound 4. 

IR expa Unscaled B3LYP Scaled B3LYP 
IR intensity, K mmol−1 Assignments 

Frequency, cm−1 

 3219 3112 1.4 νsCH 
 3209 3102 3.04 νsCH 

2977 3195 3089 24.18 νasCH 
 3190 3084 22.93 νasCH 
 3124 3020 4.86 νasCH2 

2901 3089 2986 30.45 νasCH3 
 3058 2956 8.53 νsCH2 
 3031 2930 22.46 νsCH3 

1778 1845 1784 54.11 νasC=O 
1702 1780 1721 518.06 νsC=O 
1595 1644 1589 17.8 νCC+ βHCC 

 1623 1569 2.53 νCC+ βHCC 
 1531 1480 44.33 βHCC 

1493 1529 1478 54.98 βHCC + δasCH3 
1457 1465 1416 5.9 ψCH2 
1382 1410 1363 36.14 δsCH3 
1293 1379 1333 378.7 νNC + δsCH3 + ωCH2 
1186 1223 1182 48.5 νNC + νCC + βCCH+ tCH2 
1123 1213 1173 42.44 ρCH3 + βHCC + βCO 

 1194 1154 33.57 tCH2 + βHCC 
1074 1167 1128 71.15 tCH2 + βHCC + ρCH3 
1050 1127 1090 20.67 βCNC + βHCC + ρCH3 
932 1019 985 2.04 βCCC 
876 889 859 31.2 βCCC + ρCH2 
780 814 787 14.61 γCCO + τCCCC 
756 769 743 32.58 γCNC + γHCC 
652 719 695 44.48 γHCC 
569 583 564 3.3 γCCO + ρCH2 
480 517 500 10.23 τCCCC + τCNCC + τHCCC 
444 503 486 8.03 τCCCC 

aHarmonic frequency; ν – stretching; νs-symmetric stretching; νas-asymmetric stretching; β-in plane bending;  
γ-out-of-plane bending; τ-torsion; δs-symmetric deformation; δas-asymmetric deformation; ψ-scissoring; ρ-rocking; ω-wagging 
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2. 3. 2. 2. NMR spectral analysis  

Experimental and theoretical values for 1H and 13C NMR chemical shifts of the molecule 4 are given in Table 3 and 

the atom numbering scheme is presented in Figure 5. The 13C and 1H NMR spectra of the compound 4 are recorded in 

DMSO-d6 and presented in Figures S4 and S5 (Supplementary material). 

The two carbon atoms (C3 and C4) of the succinimide ring resonating at 44.64 and 47.69 ppm in the 13C NMR 

spectrum show good agreement with computed values 52.89 and 55.13 ppm, respectively. Carbon atoms C2 and C5 of 

two carbonyl groups (deshielded because of electronegative oxygen atoms) are presented in the downfield at 180.12 

and 174.72 ppm and supported well with computed shifts at 190.75 and 183.54 ppm. The methyl carbon atom C6 is 

observed at 24.46 ppm and the computed chemical shift is at 26 ppm. Carbon atoms of two phenyl groups appeared in 

the regions 125.94–142.45 and 134.04–152.88 ppm in the experimental and calculated spectrum, respectively.  

In the 1H NMR spectrum, a singlet appearing at 1.75 ppm with three protons integral is assigned to protons of the 

methyl group and shows good agreement with theoretical values at 1.54, 1.90 and 1.91 ppm for H35, H34 and H33, 

respectively. A quartet appearing at 3.18 ppm is assigned to methylene protons (H21 and H22) and calculated values of 

2.89 and 3.09 ppm, respectively, correlate well. Peaks at 7.32–7.56 ppm, with respect to TMS, indicate the presence of 

aromatic hydrogen atoms of two phenyl groups. 
 

Table 3. Calculated and experimental 1H and 13C NMR isotropic chemical shifts (with respect to TMS in DMSO solution) of the 
compound 4 (atom positions were numbered as in Figure 5). 

1H NMR Chemical shift, ppm 13C NMR Chemical shift, ppm 

calc. exp. calc. exp. 

H21 3.09 3.18 C2 190.75 180.12 
H22 2.89 3.18 C3 55.13 47.69 
H23 7.78 7.46 C4 52.89 44.64 
H24 7.51 7.32 C5 183.54 174.72 
H25 7.70 7.45 C6 26.00 24.46 
H26 7.68 7.42 C7 152.88 142.45 
H27 7.60 7.37 C8 132.45 125.94 
H28 7.68 7.44 C9 134.42 125.94 
H29 7.53 7.53 C10 134.98 128.99 
H30 7.84 7.56 C11 135.81 128.99 
H31 7.82 7.52 C12 134.04 128.82 
H32 7.79 7.49 C13 142.20 132.47 
H33 1.91 1.75 C14 135.14 127.25 
H34 1.90 1.75 C15 134.79 127.25 
H35 1.54 1.75 C16 135.85 128.54 

   C17 135.93 128.54 
   C18 135.97 128.99 

2. 3. 2. 3. Electronic analysis 

Frontier molecular orbitals (FMO), HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied 

molecular orbital), define the way a molecule interacts with other species and present helpful information for 

characterization of the molecule chemical reactivity [45]. In order to predict and determine possible charge transfers in 

the investigated molecules, the energy levels of HOMO and LUMO are computed at the B3LYP/6-311G(d,p) level. 

Compositions of frontier molecular orbitals along with their energies and energy gaps for compounds 2, 4, 10 and 12 

are sketched in Figure 6. Energies of HOMO and LUMO and energy gaps for all investigated succinimides in vacuum, 

ethanol and DMSO are shown in Table S4 (Supplementary material). 

From Figure 6 it is evident that electron densities of HOMO and LUMO for the compound 2 are separated on the  

1-(4-metoxyphenyl) and 3-phenyl moiety, respectively. Therefore, an intramolecular charge transfer is possible in the 

molecule 2. On the contrary, in the molecule 12, the electron density of HOMO is dominantly populated on the 3-phenyl 

group and LUMO is located on the 1-(4-nitrophenyl) ring due to the strong electron accepting nitro substituent inducing 

a shift of π electron density from the 3-phenyl group toward the 1-aryl moiety. The electron density of HOMO and LUMO 

for the compound 4 is spread over succinimide and phenyl rings and such distribution cause a weaker intramolecular 
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charge transfer ICT than that in the substituted succinimides. The energy difference between the HOMO and LUMO for 

the compound 4 is obtained as 5.93 eV and confirms the low chemical reactivity of this succinimide. Interestingly, 

succinimides 2, 10 and 12 with an electron-donor and an electron-acceptor substituent have smaller energy gaps of 

5.34, 5.34 and 4.6 eV, respectively, which could explain the increase of their reactivity relative to the compound 4. In 

conclusion, the ICT is more feasible in the compound 12. 

 

 
Figure 6. HOMO and LUMO of selected investigated succinimides: compounds 2, 4, 10 and 12 

2. 4. Comparison of experimentally and computationally obtained data 

As planarity of a molecule is one of the most important molecular properties, which influences transition of electron 

density through the molecular skeleton, determination of relationships between torsion angles ( ) and spectroscopic data 

is important. With this aim, we have correlated UV absorption wavenumbers of the investigated compounds in ethanol 

with the corresponding cos2 of the Boltzmann distribution of the most stable conformers ( is obtained by the  

B3LYP/6-311G(d,p) method). Excellent linear correlations (for donors: νmax = 43.804 × cos2  + 38.063, R2 = 0.9331; for 

acceptors: νmax = –40.415 cos2  + 56.774, R2 = 0.9101) were obtained and the results are entirely in accordance with the 

previously described LFER model (Fig. 3). Further, correlations of C2 and C5 SCS with cos2  show excellent linear trends 

(δC(C2) = −2.221 cos2  + 0.471, R2 = 0.9093; δC(C5) = –2.372 cos2  + 0.492, R2 = 0.9029). Moreover, excellent correlations of 

cos2  with Hammett substituent constants were obtained (data not shown), which is again in agreement with the 

previously described LFER concept. Also, excellent agreements of experimentally and computationally obtained SCS data 

were obtained (δC(C2)exp = 0.631 δC(C2)calc – 0.022, R2 = 0.9197; δC(C5)exp = 0.633 δC(C5)calc – 0.012, R2 = 0.9383). Excellent 

agreements of theoretical with experimental data directly indicate high validity and precision of the proposed models. 

2. 5. ADMET and PASS profiling 

Structural properties of the investigated succinimides have been tested by the Lipinski's empirical ‘rule of five’ in order 

to determine which of them is pharmacokinetically active [46]. A compound has potentially a good in vivo permeability, if 

following the rules are satisfied: MW<500; the compound bears 5 atoms that are proton-donors of hydrogen bonds (–OH 

and –NH); the compound has a maximum of 10 hydrogen bond acceptor atoms (N and O) and the logarithm of the octanol–

water partition coefficient (log P) is lower than 5 [47]. The fifth rule refers to the structural parameters and includes the 

number of rotatable bonds (lower than 8), molar refractivity (in the range of 40–130 Å3) as well as a small polar surface 

area (< 140 Å2) [47-49]. All structural parameters mentioned above are applied to the investigated succinimides and 

methsuximide. The corresponding data are presented in Table S4 (Supplementary material) where the partition coefficient 

(log P) and the polar surface area are calculated by using the program Molinspiration [50]. 
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Table S5 shows that all investigated succinimides meet the empirical criteria ‘rule of five’ being candidate molecules 

for pharmaco-dynamic phase investigations. Since log P is associated with the solubility and permeability of a molecule, 

this physicochemical parameter is one of the most important in estimation of the molecule capability for transfer 

through the cell membrane. The investigated succinimide derivatives are moderately lipophilic compounds, whereby all 

halogen substituents, methoxy and methyl groups induce an increase in the hydrophobic character compared to the 

unsubstituted molecule (compound 4). Further, the synthesized molecules exhibit a low number of rotatable bonds 

(Table S5), which can provoke moderate conformational changes of the molecule due to binding to a receptor. 

Moreover, as the polar surface area (PSA) is a very important descriptor for drug transport properties and all 

investigated succinimides possess convenient values of this parameter, it can be expected that these potentially 

biologically active candidates will be transported without difficulties. Finally, it can be noted that all investigated 

compounds exhibit similar ‘rule of five’ properties to those of the commercially available anticonvulsant methsuximide. 

The PASS (Prediction of Activity Spectra) online tool [51] is used for prediction of protein and ligand interactions. In 

this study, the PASS results (Table S6, Supplementary material). indicate that the novel series of succinimides are very 

promising drug candidates, based on the comparison of the Pa/Pi ratio of the parent compound - methsuximide, 

whereby few derivatives are principally segregate on this ratio. 

4. CONCLUSION 

In this paper, twelve novel derivatives of the commercially available drug methsuximide have been synthesized as 

potential anticonvulsant agents. The compounds were thoroughly characterized by different spectroscopic techniques. 

LFER analysis revealed that spectral properties are strongly influenced by electronic properties of the substituents. 

Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of the investigated 

succinimides have been carried out by using DFT showing excellent agreements with the experimental data. The in-silico 

PASS prediction and ADMET profiling results regarding potential biological activities of investigated succinimides are 

encouraging enough to merit further in vitro and in vivo investigation. 

Supplementary Material 

Additional supporting material may be found journal web site:https://www.ache-pub.org.rs/index.php/HemInd-

/article/view/493/pdf_1 

Acknowledgements: This work has been financially supported by the Ministry of Education, Science and 

Technological Development of the Republic of Serbia, under Grants no. 172013, 173052, 172035, and TR31006. 

Numerical simulations were run on the PARADOX cluster at the Scientific Computing Laboratory of the Institute of Physics 

Belgrade, supported in part by the Ministry of Education, Science and Technological Development of the Republic of 

Serbia under the project No. ON171017 

LITERATURA 

[1] Hargreaves MK, Pritchard JG, Dave HR. Cyclic carboxylic monoimides. Chem Rev. 1970; 70: 439 – 469. 

[2] Kamiński K, Obniska J. Design, synthesis, and anticonvulsant activity of N-phenylamino derivatives of 3,3-dialkyl-pyrrolidine-2,
5-diones and hexahydro-isoindole-1,3-diones. Bioorgan Med Chem. 2008; 16: 4921 – 4931. 

[3] Kamiński K, Rzepka S,Obniska J. Synthesis and anticonvulsant activity of new 1-[2-oxo-2-(4-phenylpiperazin-1-yl)ethyl]
pyrrolidine-2,5-diones. Bioorgan Med Chem Lett. 2011; 21: 5800 – 5803. 

[4] Patsalos PN. Properties of antiepileptic drugs in the treatment of idiopathic generalized epilepsies. Epilepsia. 2005; 46: 140–
148. 

[5] Porter RJ, Penry JK, Lacy JR, Newmark ME, Kupferberg HJ. Plasma concentrations of phensuximide, methsuximide, and their 
metabolites in relation to clinical efficacy. Neurology. 1979; 29: 1509 – 1513.  

[6] Jensen PB, Sokilde B, Carstensen EV, Langer SW, Creighton A, Sehested M, Jensen L. Succinimide and maleimide derivatives and 
their use as topoisomerase II catalytic inhibitors. EP 1373494, 2004 

[7] Korhalkar AA, Khadse BG, Sengupta SR. Synthesis of 2-hetero/aryl-N-(p-fluorobenzene) succinimide derivatives as 
antitubercular agents. Indian Drugs. 1992; 29: 306 – 307. 

https://www.ache-pub.org.rs/index.php/HemInd/article/view/493/pdf_1
https://www.ache-pub.org.rs/index.php/HemInd/article/view/493/pdf_1


J. PETKOVIĆ CVETKOVIĆ et al.: ELUCIDATION OF POTENTIAL ANTICONVULSANT AGENTS Hem. Ind. 73 (2) 125–137 (2019) 

136  

[8] Khadilkar BM, Bhayade SR. Synthesis and hypotensive activity of some succinimide derivatives. Indian J ChemB. 1993; 32: 338 – 
342.  

[9] Shetgiri NP, Nayak BK. Synthesis and antimicrobial activity of some succinimides. Indian J Chem B. 2005; 44B: 1933 – 1936. 

[10] Zentz F, Guillou RL, Labia R, Sirot D, Linard B, Valla A. Syntheses, in vitro antibacterial and cytotoxic activities of a series of 3-
substituted succinimides. Farmaco. 2004; 59: 879 – 886. 

[11] Bansode TN, Shelke JV, Dongre VG. Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines. Eur J 
Med Chem. 2009; 44: 5094 – 5098. 

[12] Sharir M. Succinimide derivatives as ocular hypotensive agents. WO 2007057889, 2007. 

[13] Prince DA. Succinimides and oxazolidinediones for treating tremor. US 4981867, 1991. 

[14] Kumar S, Prakash S, Gupta K, Dongre A, Balaram P, Balaram H. Unexpected functional implication of a stable succinimide in the 
structural stability of Methanocaldococcus jannaschii glutaminase. Nat Commun. 2016; 7: 12798. 

[15] Takahashi O, Kirikoshi R, Manabe N. Roles of intramolecular and intermolecular hydrogen bonding in a three-water-assisted 
mechanism of succinimide formation from aspartic acid residues. Molecules. 2014; 19: 11440 – 11452. 

[16] Grassi L, Regl C, Wildner S, Gadermaier G, Huber CG, Cabrele C, Schubert M. Complete NMR Assignment of succinimide and its 
detection and quantification in peptides and intact proteins. Anal Chem. 2017; 89: 11962 – 11970. 

[17] Kleemann A, Engel J. Pharmaceutical Substances: Syntheses, Patents, Applications. Stuttgart, Germany: Georg Thieme Verlag; 
2001. 

[18] Popović-Đorđević J, Vitnik V, Vitnik Ž, Ivanović M. Glutarimides: biological activity, general synthetic methods and 
physicochemical properties. Hem Ind. 2015; 69: 523 – 536. 

[19] Liu SL, Li Y, Guo JR, Yang GC, Li XH, Gong JF, Song MP. An approach to 3-(Indol-2-yl)succinimide derivatives by manganese-
catalyzed C-H activation. Org Lett. 2017; 19: 4042 – 4045. 

[20] Chauhan P, Kaur J, Chimni SS. Asymmetric organocatalytic addition reactions of maleimides. A promising approach towards the 
synthesis of chiral succinimide derivatives. Chem-Asian J. 2013; 8: 328 – 346. 

[21] Han SH, Kim S, De U, Mishra NK, Park J, Sharma S, Kwak JH, Han S, Kim HS, Kim IS. Synthesis of succinimide-containing 
chromones, naphthoquinones, and xanthones under Rh(III) catalysis: evaluation of anticancer activity. J Org Chem. 2016; 81: 
12416 – 12425. 

[22] Kishikawa K, Furukawa Y, Watanabe T, Kohri M, Taniguchi T, Kohmoto S. Why chiral tartaric imide derivatives give large helical 
twisting powers in nematic liquid crystal phases: substituent-effect approach to investigate intermolecular interactions between 
dopant and liquid crystalline molecules. Liq Cryst. 2017; 44: 956 – 968. 

[23] Shirini F, Khaligh NG. Succinimide-N-sulfonic acid: An efficient catalyst for the synthesis of xanthene derivatives under solvent-
free conditions. Dyes Pigments. 2012; 95: 789 – 794. 
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antikonvulzivnih jedinjenja 
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(Naučni rad) 

Novi derivati sukcinimida sintetisani su polazeći od 3-metil-3-fenilćilibarne kiseline 

i supstituisanih analina u mikrotalasnom reaktoru u odsustvu rastvarača. Sva 

jedinjenja su okarakterisana primenom UV-vidljive spektroskopije, infracrvene 

spektroskopije sa Furijeovom transformacijom (FT-IR), protonske nuklearne 

magnetne rezonancije (1H NMR), nuklearne magnetne rezonancije ugljenika-13, 

(13С NMR), kao i elementalnom analizom. Uticaj elektronskih efekata supstituenata 

na spektroskopske podatke analiziran je upotrebom Hametove jednačine. Takođe, 

izvršena je detaljna interpretacija, kao i poređenje eksperimentalno dobijenih i 

teorijski izračunatih FT-IR, UV i NMR spektara. Pored toga, urađeno je ADMET (engl. 

absorption, distribution, metabolism, excretion and toxicity) profilisanje i in-silico 

predviđanje potencijalne biološke aktivnosti novosintetisanih derivata sukcinimida. 

  Ključne reči: Sukcinimidi; Elek-

tronski efekat; Spektroskopska ana-

liza; Kvantno-hemijski proračun 


