#### Supplementary material to

# Application of response surface methodology to optimize the treatment process of high conversion of free fatty acids using (1R)-(-)-camphor-10--sulfonic acid and iron(III) sulphate

# Adeeb Hayyan<sup>1,2</sup>, Khalid M. Abed<sup>1,3</sup>, Mohammed A. Al-Saadi<sup>4</sup>, Amal A. M. Elgharbawy<sup>5,6</sup>, Yousef Mohammed Alanazi<sup>7</sup>, Jehad Saleh<sup>7</sup>, Nur Hanie Mohd Latiff<sup>8</sup>, Sharifah Shahira Syed Putra<sup>1</sup>, Mohd Roslan Mohd Nor<sup>9</sup> and Shareef Fadhil Mahel Alhashemi<sup>10</sup>

<sup>1</sup>Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia

<sup>2</sup>Sustainable Process Engineering Centre (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia

<sup>3</sup>Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

<sup>4</sup>National Chair of Materials Science and Metallurgy, University of Nizwa, Nizwa, Oman

<sup>5</sup>International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur, Malaysia <sup>6</sup>Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia

<sup>7</sup>Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia <sup>8</sup>Global Centre for Environmental Remediation (GCER), College of Engineering, Science, and Environment (CESE), University of

Newcastle, Callaghan, Australia

<sup>9</sup>Halal Research Group, Academy of Islamic Studies, Universiti Malaya, Kuala Lumpur, Malaysia

<sup>10</sup>Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman

#### Hem. Ind. 00(0) 000-000 (2025); https://doi.org/10.2298/HEMIND240515003H

| Table S.: Box-Behnken design          | for optimizing ( | (1R)-(-)-camphor-10-sul | fonic acid catalyzed ( | esterification |
|---------------------------------------|------------------|-------------------------|------------------------|----------------|
| · · · · · · · · · · · · · · · · · · · |                  |                         |                        |                |

| Dup  | Factor 1                 | Factor 2                       | Factor 3                    | Factor 4              | Response |
|------|--------------------------|--------------------------------|-----------------------------|-----------------------|----------|
| KUII | A: Catalyst dosage, wt.% | B: Methanol-to-oil molar ratio | C: Reaction temperature, °C | D: Reaction time, min | F / wt.% |
| 1    | 1.25                     | 14                             | 60                          | 50                    | 0.75     |
| 2    | 1.25                     | 14                             | 60                          | 50                    | 0.72     |
| 3    | 1.25                     | 14                             | 40                          | 30                    | 1.73     |
| 4    | 1.25                     | 14                             | 40                          | 30                    | 1.7      |
| 5    | 2.25                     | 8                              | 60                          | 10                    | 1.57     |
| 6    | 2.25                     | 8                              | 60                          | 10                    | 1.5      |
| 7    | 1.25                     | 8                              | 40                          | 10                    | 2.76     |
| 8    | 1.25                     | 8                              | 40                          | 10                    | 2.8      |
| 9    | 1.25                     | 8                              | 40                          | 50                    | 1.78     |
| 10   | 1.25                     | 8                              | 40                          | 50                    | 1.77     |
| 11   | 2.25                     | 2                              | 60                          | 30                    | 4.1      |
| 12   | 2.25                     | 2                              | 60                          | 30                    | 4.3      |
| 13   | 2.25                     | 14                             | 60                          | 30                    | 0.44     |
| 14   | 2.25                     | 14                             | 60                          | 30                    | 0.4      |
| 15   | 0.25                     | 2                              | 60                          | 30                    | 5.1      |
| 16   | 0.25                     | 2                              | 60                          | 30                    | 4.9      |
| 17   | 2.25                     | 8                              | 40                          | 30                    | 1.88     |
| 18   | 2.25                     | 8                              | 40                          | 30                    | 1.81     |
| 19   | 1.25                     | 8                              | 80                          | 50                    | 1.8      |
| 20   | 1.25                     | 8                              | 80                          | 50                    | 1.79     |
| 21   | 1.25                     | 14                             | 80                          | 30                    | 0.96     |
| 22   | 1.25                     | 14                             | 80                          | 30                    | 1        |
| 23   | 0.25                     | 8                              | 80                          | 30                    | 3.72     |
| 24   | 0.25                     | 8                              | 80                          | 30                    | 3.7      |
| 25   | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 26   | 1.25                     | 8                              | 60                          | 30                    | 1.41     |
| 27   | 1.25                     | 2                              | 60                          | 50                    | 3.31     |
| 28   | 1.25                     | 2                              | 60                          | 50                    | 3.29     |
| 29   | 0.25                     | 8                              | 60                          | 50                    | 3.86     |
| 30   | 0.25                     | 8                              | 60                          | 50                    | 3.85     |



| Pup  | Factor 1                 | Factor 2                       | Factor 3                    | Factor 4              | Response |
|------|--------------------------|--------------------------------|-----------------------------|-----------------------|----------|
| Kull | A: Catalyst dosage, wt.% | B: Methanol-to-oil molar ratio | C: Reaction temperature, °C | D: Reaction time, min | F / wt.% |
| 31   | 2.25                     | 8                              | 80                          | 30                    | 1.6      |
| 32   | 2.25                     | 8                              | 80                          | 30                    | 1.56     |
| 33   | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 34   | 1.25                     | 8                              | 60                          | 30                    | 1.41     |
| 35   | 0.25                     | 8                              | 40                          | 30                    | 4.87     |
| 36   | 0.25                     | 8                              | 40                          | 30                    | 4.8      |
| 37   | 2.25                     | 8                              | 60                          | 50                    | 0.44     |
| 38   | 2.25                     | 8                              | 60                          | 50                    | 0.42     |
| 39   | 1.25                     | 8                              | 80                          | 10                    | 2.98     |
| 40   | 1.25                     | 8                              | 80                          | 10                    | 3        |
| 41   | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 42   | 1.25                     | 8                              | 60                          | 30                    | 1.41     |
| 43   | 0.25                     | 8                              | 60                          | 10                    | 5.99     |
| 44   | 0.25                     | 8                              | 60                          | 10                    | 6.2      |
| 45   | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 46   | 1.25                     | 8                              | 60                          | 30                    | 1.41     |
| 47   | 1.25                     | 14                             | 60                          | 10                    | 2.12     |
| 48   | 1.25                     | 14                             | 60                          | 10                    | 2        |
| 49   | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 50   | 1.25                     | 8                              | 60                          | 30                    | 1.41     |
| 51   | 0.25                     | 14                             | 60                          | 30                    | 3.74     |
| 52   | 0.25                     | 14                             | 60                          | 30                    | 3.69     |
| 53   | 1.25                     | 2                              | 60                          | 10                    | 5.05     |
| 54   | 1.25                     | 2                              | 60                          | 10                    | 5.15     |
| 55   | 1.25                     | 2                              | 40                          | 30                    | 4.14     |
| 56   | 1.25                     | 2                              | 40                          | 30                    | 4        |
| 57   | 1.25                     | 2                              | 80                          | 30                    | 2.68     |
| 58   | 1.25                     | 2                              | 80                          | 30                    | 2.8      |

### Table S.: Box-Behnken design for optimising iron (III) sulphate catalysed esterification

| Dum | Factor 1                 | Factor 2                       | Factor 3                    | Factor 4              | Response |
|-----|--------------------------|--------------------------------|-----------------------------|-----------------------|----------|
| Run | A: Catalyst dosage, wt.% | B: Methanol-to-oil molar ratio | C: Reaction temperature, °C | D: Reaction time, min | F / wt.% |
| 1   | 1.25                     | 14                             | 60                          | 50                    | 0.75     |
| 2   | 1.25                     | 14                             | 40                          | 30                    | 1.73     |
| 3   | 2.25                     | 8                              | 60                          | 10                    | 1.57     |
| 4   | 1.25                     | 8                              | 40                          | 10                    | 2.76     |
| 5   | 1.25                     | 8                              | 40                          | 50                    | 1.78     |
| 6   | 2.25                     | 2                              | 60                          | 30                    | 4.1      |
| 7   | 2.25                     | 14                             | 60                          | 30                    | 0.44     |
| 8   | 0.25                     | 2                              | 60                          | 30                    | 5.1      |
| 9   | 2.25                     | 8                              | 40                          | 30                    | 1.88     |
| 10  | 1.25                     | 8                              | 80                          | 50                    | 1.8      |
| 11  | 1.25                     | 14                             | 80                          | 30                    | 0.96     |
| 12  | 0.25                     | 8                              | 80                          | 30                    | 3.72     |
| 13  | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 14  | 1.25                     | 2                              | 60                          | 50                    | 3.31     |
| 15  | 0.25                     | 8                              | 60                          | 50                    | 3.86     |
| 16  | 2.25                     | 8                              | 80                          | 30                    | 1.6      |
| 17  | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 18  | 0.25                     | 8                              | 40                          | 30                    | 4.87     |
| 19  | 2.25                     | 8                              | 60                          | 50                    | 0.44     |
| 20  | 1.25                     | 8                              | 80                          | 10                    | 2.98     |
| 21  | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 22  | 0.25                     | 8                              | 60                          | 10                    | 5.99     |
| 23  | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 24  | 1.25                     | 14                             | 60                          | 10                    | 2.12     |



| Dun | Factor 1                 | Factor 2                       | Factor 3                    | Factor 4              | Response |
|-----|--------------------------|--------------------------------|-----------------------------|-----------------------|----------|
| Run | A: Catalyst dosage, wt.% | B: Methanol-to-oil molar ratio | C: Reaction temperature, °C | D: Reaction time, min | F / wt.% |
| 25  | 1.25                     | 8                              | 60                          | 30                    | 1.39     |
| 26  | 0.25                     | 14                             | 60                          | 30                    | 3.74     |
| 27  | 1.25                     | 2                              | 60                          | 10                    | 5.05     |
| 28  | 1.25                     | 2                              | 40                          | 30                    | 4.14     |
| 29  | 1.25                     | 2                              | 80                          | 30                    | 2.68     |
| 30  | 1.25                     | 14                             | 60                          | 50                    | 0.73     |
| 31  | 1.25                     | 14                             | 40                          | 30                    | 1.7      |
| 32  | 2.25                     | 8                              | 60                          | 10                    | 1.5      |
| 33  | 1.25                     | 8                              | 40                          | 10                    | 2.8      |
| 34  | 1.25                     | 8                              | 40                          | 50                    | 1.75     |
| 35  | 2.25                     | 2                              | 60                          | 30                    | 4        |
| 36  | 2.25                     | 14                             | 60                          | 30                    | 0.42     |
| 37  | 0.25                     | 2                              | 60                          | 30                    | 5        |
| 38  | 2.25                     | 8                              | 40                          | 30                    | 1.89     |
| 39  | 1.25                     | 8                              | 80                          | 50                    | 1.82     |
| 40  | 1.25                     | 14                             | 80                          | 30                    | 1        |
| 41  | 0.25                     | 8                              | 80                          | 30                    | 3.75     |
| 42  | 1.25                     | 8                              | 60                          | 30                    | 1.4      |
| 43  | 1.25                     | 2                              | 60                          | 50                    | 3.2      |
| 44  | 0.25                     | 8                              | 60                          | 50                    | 3.9      |
| 45  | 2.25                     | 8                              | 80                          | 30                    | 1.58     |
| 46  | 1.25                     | 8                              | 60                          | 30                    | 1.4      |
| 47  | 0.25                     | 8                              | 40                          | 30                    | 4.8      |
| 48  | 2.25                     | 8                              | 60                          | 50                    | 0.42     |
| 49  | 1.25                     | 8                              | 80                          | 10                    | 3        |
| 50  | 1.25                     | 8                              | 60                          | 30                    | 1.4      |
| 51  | 0.25                     | 8                              | 60                          | 10                    | 6        |
| 52  | 1.25                     | 8                              | 60                          | 30                    | 1.4      |
| 53  | 1.25                     | 14                             | 60                          | 10                    | 2.2      |
| 54  | 1.25                     | 8                              | 60                          | 30                    | 1.4      |
| 55  | 0.25                     | 14                             | 60                          | 30                    | 3.75     |
| 56  | 1.25                     | 2                              | 60                          | 10                    | 5        |
| 57  | 1.25                     | 2                              | 40                          | 30                    | 4.2      |
| 58  | 1.25                     | 2                              | 80                          | 30                    | 2.7      |

# Table S3. Optimization constraints for (1R)-(-)-camphor-10-sulfonic acid-catalyzed esterification

| Name                       | Goal        | Lower limit | Upper limit | Importance |
|----------------------------|-------------|-------------|-------------|------------|
| A: catalyst dosage, wt.%   | Minimise    | 0.25        | 1.5         | 2          |
| B: molar ratio             | Is in range | 2           | 14          | 2          |
| <i>C</i> : Temperature, °C | Minimise    | 50          | 60          | 2          |
| D: Time, min               | Is in range | 10          | 50          | 2          |
| F/ wt.%                    | Minimize    | 0.44        | 1           | 5          |

# Table S4. Solutions of optimization for (1R)-(-)-camphor-10-sulfonic acid-catalyzed esterification

| Number | Catalyst dosage. Wt.% | Molar ratio | Temperature, °C | Time, min | F / wt.% | Desirability |          |
|--------|-----------------------|-------------|-----------------|-----------|----------|--------------|----------|
| 1      | 1.50                  | 12.67       | 59.58           | 33.11     | 0.43     | 1.000        | Selected |
| 2      | 1.48                  | 13.65       | 56.47           | 35.85     | 0.44     | 1.000        |          |
| 3      | 1.50                  | 12.76       | 53.68           | 42.04     | 0.43     | 1.000        |          |
| 4      | 1.48                  | 12.88       | 59.23           | 46.75     | 0.43     | 1.000        |          |
| 5      | 1.49                  | 13.54       | 59.63           | 33.44     | 0.43     | 1.000        |          |

#### Table S5: Optimisation constraints for iron(III) sulphate used for esterification of ACPO

| Name                     | Goal        | Lower Limit | Upper Limit | Importance |
|--------------------------|-------------|-------------|-------------|------------|
| A: Catalyst dosage, wt.% | Minimise    | 2           | 6           | 1          |
| B: Molar ratio           | Is in range | 8           | 12          | 2          |
| C: Temperature, °C       | Minimise    | 60          | 80          | 1          |
| D: Time, min             | Minimise    | 100         | 200         | 1          |
| F / wt.%                 | Minimize    | 0.75        | 3.7         | 5          |



| Number | Catalyst dosage wt.% | Molar ratio | Temperature, °C | Time, min | <i>F /</i> wt.% | Desirability |          |
|--------|----------------------|-------------|-----------------|-----------|-----------------|--------------|----------|
| 1      | 3.14                 | 12.00       | 60.00           | 178.59    | 1.037           | 0.771        | Selected |
| 2      | 3.12                 | 12.00       | 60.00           | 178.81    | 1.036           | 0.771        |          |
| 3      | 3.17                 | 12.00       | 60.00           | 178.60    | 1.031           | 0.771        |          |
| 4      | 3.11                 | 12.00       | 60.00           | 178.36    | 1.047           | 0.771        |          |
| 5      | 3.14                 | 12.00       | 60.00           | 179.18    | 1.024           | 0.770        |          |

Table S6. Solutions of optimisation for iron (III) sulphate-catalysed esterification

Table S7. Specifications of biodiesel produced from ACPO compared with the standard limits

| Ducacutica                               | Diadianal frame ACDO | EN 14214     |                | ASTM D6751  |                 |
|------------------------------------------|----------------------|--------------|----------------|-------------|-----------------|
| Properties                               | Biodiesel from ACPO  | Test method  | Limit          | Test method | Limits          |
| Ester content, mol.%                     | 96.3                 | EN 14103     | min 96.5       | -           | -               |
| Monoacylglycerol content, mol.%          | 0.05                 | EN 14105     | max 0.80       | -           | -               |
| Diacylglycerols content, mol.%           | 0.025                | EN 14105     | max 0.20       | -           | -               |
| Triacylglycerols content, mol.%          | <0.01                | EN 14105     | max 0.20       | -           | -               |
| Free glycerol content, mol.%             | <0.01                | EN 14105     | max 0.02       | ASTM D 6584 | max 0.020 wt.%  |
| Total glycerol content, mol.%            | 0.050                | EN 14105     | max 0.25       | ASTM D 6584 | max 0.240 wt.%  |
| Water content, mg kg <sup>-1</sup>       | 473                  | EN ISO 12937 | max 500        | ASTM D 2709 | max 0.050 vol.% |
| K content, mg kg <sup>-1</sup> -         | max 1                | EN 14108     | max 5.0        | UOP 391     | max 5.0         |
| P content, mg kg <sup>−1</sup>           | max 7.10             | EN 14107     | max 10.0       | ASTM D 4951 | max 0.001 wt.%  |
| Density (at 15 °C), kg m <sup>-3</sup>   | 867                  | EN ISO 3675  | 860 - 900      | -           | -               |
| Flash point, °C                          | 182                  | EN ISO 3679  | 120 °C min     | ASTM D 93   | 130 - min       |
| Cloud point, °C                          | 16                   | -            | -              | ASTM D 2500 | Not specified   |
| Content of sulphated ash, wt.%           | <0.005               | ISO 3987     | Max 0.02 mol.% | ASTM D 874  | Max 0.020       |
| Total contamination, mg kg <sup>-1</sup> | 0.008                | EN 12662     | 24 - max       | -           | -               |
| Copper strip corrosion (3 h at 50 °C)    | Class 1              | EN ISO 2160  | Class 1 rating | ASTM D130   | No. 3 max       |

Table S8. Effect of recycling catalysts on the FFA reduction and conversion of FFA to FAME

| Reused runs – | (1R)-(-)-camphor-10-sulfonic acid |                   | Iron (III) sulphate         |                   |  |
|---------------|-----------------------------------|-------------------|-----------------------------|-------------------|--|
|               | F / wt.% (final)                  | FFA conversion, % | FFA content reduction, wt.% | FFA conversion, % |  |
| 1             | 2.09                              | 75.20             | 3.51                        | 58.36             |  |
| 2             | 3.67                              | 56.46             | 4.88                        | 42.11             |  |
| 3             | 4.23                              | 49.82             | 4.39                        | 47.92             |  |
| 4             | 5.46                              | 35.23             | 4.70                        | 44.24             |  |
| 5             | 5.48                              | 34.99             | 5.36                        | 36.41             |  |
|               |                                   |                   |                             |                   |  |



*Figure S1.* The perturbation plot for optimizing 10-CSA-catalyzed esterification



Figure S2. Normal plot of residuals for optimizing 10-CSA- catalysed esterification



*Figure S3:* Contour plots for timising 10-CSA-catalysed esterification: (a) catalyst dosage and methanol-to-oil molar ratio, (b) catalyst dosage and reaction temperature, (c) catalyst dosage and reaction time





Figure S4. The perturbation plot for optimising iron(III) sulphate catalysed esterification



Figure S5. Normal Plot of Residuals for optimising iron III sulphate acid catalysed esterification





*Figure S6.* Contour plots for optimising iron III sulphate catalysed esterification: (a) catalyst dosage and methanol-to-oil molar ratio, (b) catalyst dosage and reaction temperature, (c) catalyst dosage and reaction temperature

