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MACHINE LEARNING PREDICTIONS ON THE 
OUTPUT PARAMETERS OF COMMON RAIL 
DIRECT INJECTION ENGINES FUELED WITH 
TERNARY BLEND 

 
Article Highlights  

• CRDI engine performance with a methyl acetate antioxidant/Non-edible oil/diesel 

ternary blend 

• Examine the impacts of fuel injection strategies (FIT and EGR) on the engine 
characteristics 

• Innovation of machine learning algorithms and prediction models LR, NN, K-NN, 

SVM, and LSTM. 

• The LSTM model yields the highest R2 value range of 0.92 to 0.96, for each engine 

response 

 
Abstract  

This study aims to employ a machine learning algorithm (MLA) to predict 

Common Rail Direct Injection (CRDI) engine emissions and performance 

using alternative feedstock. This study started with a diesel-SCOME- Methyl 

Acetate ternary mix. The engine was tested with fuel injection time (FIT) of 

23°, 21°, and 19° bTDC with exhaust gas recirculation (EGR) levels of 10%, 

15%, and 20% at estimated power productivity. Retard injection time and 

increasing EGR rates reduced in-cylinder peak pressure. Operating 

conditions with the maximum BTE were 21° bTDC and 10% EGR. Adjusting 

injection time and EGR reduced nitrogen oxide relative to the baseline. 

Smoke opacity was 1% lower at 21° bTDC and 10% exhaust gas 

recirculation than in conventional diesel operation. Retard injection time and 

exhaust gas recirculation increased HC and CO emissions. However, MLAs 

predict CI engine operation and discharge properties. The long short-term 

memory (LSTM) Model predicts engine output characteristics with a 

squared correlation (R2) of 0.92 to 0.96. At the same time, mean relative 

error (MRE) values ranged from 1.74 to 4.68%. These results show that the 

LSTM models provide superior predictive capabilities in this investigation, 

particularly when considering numerous variables to analyze engine 

responses. 

Keywords: biodiesel; methyl acetate; CRDI engine; EGR; Machine 
Learning Algorithms. 

 

Fossil fuel-based energy use in industrialized and 

developing nations is predicted to grow by 5—7% and 

1—2% yearly. In response to this increasing use,  
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researchers are considering alternative resources [1]. 

Because of their contributions to significant sectors, 

diesel engines are vital to the world market 

consequently [2]. Because they are more effective at 

transforming fuel than gasoline engines, compression 

ignition (CI) engines are often used in mobility. 

Nevertheless, because of their harmful impacts that 

affect the ecology and individual wellness, the greater 

levels of pollutants are a cause for worry. Prolonged 

exposure to pollutants has been found to elevate the 

likelihood of developing lung cancer, increasing the 

susceptibility to cardiorespiratory ailments [3]. It is 

feasible to use several types of oils to power CI engines  

http://www.ache.org.rs/CICEQ
mailto:karthikeyanphd2022@gmail.com


174 

SUBRAMANIAN et al.: MACHINE LEARNING PREDICTIONS ON THE… Chem. Ind. Chem. Eng. Q. 31 (3) 173−184 (2025) 
 

 

 

by using numerous methods and making 

adjustments [4]. The study reported that biomass fuel 

for industrial use is derived from agricultural 

byproducts. Thus, environmental impacts are 

mitigated. The effects of varying the ratio of alcohols 

added to milk scum oil are analyzed [5]. 

Overview of Simmondsia chinensis feedstocks 

It is reported that the Simmondsia chinensis oil 

(SCO) extract from the seeds of the Jojoba tree plant, 

a shrub can reach a height of between 1 and 5 m and 

has a long, healthy life span (100—200 years). This 

plant, which is common in the United States, has many 

other names. Its seedlings have oil and wax content 

ranging from 44 to 56 percent. The jojoba oil had a 

yellow hue, was without scent, and contained only trace 

amounts of triglyceride esters in addition to 97% 

monoesters of long-chain lipids. This chemical 

component is responsible for jojoba's self-stability and 

tolerance to elevated temperatures when compared to 

other non-edible oils [6]. When SCO is treated with the 

transesterification procedure, the result is biodiesel, 

which has improved properties than plain diesel, such 

as greater intrinsic oxygen content, improved cetane, 

and less sulfur [7]. 

Biodiesel as an alternative fuel in CI Engine 

Researchers evaluated CI engine efficiency and 

conducted ignition experiments using biodiesel derived 

from palm oil. It was discovered that using warmed oil 

resulted in decreased hydrocarbon (HC) and carbon 

monoxide (CO) pollutants but greater exhaust 

temperatures and nitrogen oxide (NOx) levels. Hydrous 

ethanol significantly reduces nitrogen oxide emissions, 

according to a critical analysis of numerous approaches 

to employing it in engines [8]. Results from the 

experiments demonstrated a drastic cut in various 

discharges compared to the diesel engine running on a 

single injection. In addition, growth in brake thermal 

efficiency (BTE) was 4.46%. Propane-inducing diesel 

engines using waste seed biodiesel (WSBD) have been 

investigated [9]. Additionally, this revolutionary 

combustion method is being heavily tested in internal 

combustion engines. Minimizing pollutants and 

increasing burning effectiveness are the objectives 

[10]. Another study examined the effects of using 

sapota methyl ester on the parameters of combustion 

and EGR and their impact. The outcomes suggested 

that shorter delays occurred at higher CR values. 

Lowered levels of nitrogen oxides were also detected 

[11]. The trial was conducted using cottonseed 

biodiesel in a common rail direct injection (CRDI) 

engine using exhaust gas recirculation. It follows from 

these experimental probes that an EGR rate of 25% 

results in a nearly 33% reduction in Nox [12]. Recently, 

the binary combination concept was investigated as a 

result of superior blend stability, reduced expenditure, 

along minor changes in engine hardware settings. The 

research outlined in this paper attempts to use gasoline 

along with methyl acetate. The studies on methyl 

acetate additives in engine applications are very 

limited. They have achieved prominence because of 

their soot minimization capability [13].This study looks 

at what happens when diesel and n-Pentanol/Karanja 

oil biodiesel are mixed. By including n-Pentanol, the 

properties of the biodiesel-diesel blend will be better at 

low temperatures. Pentanol's reduced fluidity and great 

instability will also significantly lower pollutants [14]. 

They discovered that a higher concentration of 

additives significantly decreased brake-specific fuel 

consumption (BSFC) and contributed to a steeper 

percentage decline in emissions [15]. 

Studies on variable FIT and EGRs with Ternary fuel 

The experiment was carried out with a ternary 

combination of diesel and JME+ n-butanol additive. It 

can be shown that jojoba oil with a high fraction of 

DBJ15 has the potential to achieve reduced pollutants 

in the short term while maintaining a high thermal 

efficiency [16]. Alcohol is made from a vast range of 

environmentally friendly ingredients. Alcohols, which 

include methanol, ethanol, and propanol, have a lower 

number of carbon atoms. Higher alcohols, on the other 

hand, have more carbon atoms than lower alcohols. 

These include pentanol, hexanol, heptanol, and 

decanol [17]. Researchers investigated the effects of 

combining diesel with 1-hexanol at different injection 

times and EGR percentages. Integrating 1-hexanol with 

an improved pre-combined burning phase prolonged 

the ignition impediment's length. At 23 BTDC and 10% 

EGR, there was a systematic reduction in both NOx and 

smoke [18]. The usage of EGR technology is one 

common strategy for decreasing exhaust-borne 

nitrogen oxides in IC engines [19]. Increase the ratio of 

1-C6H14O in diesel/WPO blends. Based on the data, it 

was found that an increased 1-C6H14O fraction in the 

mixture somewhat reduced engine performance. 

Smoke, CO, and NOx were reduced at the same 

duration, although there was a small increase in 

hydrocarbons [20]. Investigators conducted an 

empirical analysis of 2 greater alcohols, decanol and 1-

hexanol, combined with various blends of diesel and 

biodiesel. In this case, the tertiary mixes were almost 

identical to pure diesel and had superior BTE than 

biodiesel. Because of the greater alcohol content, the 

tertiary mix has the minimum emission characteristics, 

such as the least amount of smoke emission [21]. It 

stipulates that a CRDI diesel engine running on a 

ternary mix fuel has its burning and exhaust properties 

carefully examined during reduced passive 
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configurations. As a result, there is a decrease in 

smoke and Nox discharges. In addition to being very 

unpredictable, ethanol has an elevated level of O2 and 

an elevated latent heat of evaporation. Any of these 

actions might aid in lowering smoke and NOx 

pollutants [22]. Because ABE-diesel blends have a 

bigger O2 level and latent heat of vaporization than 

plain diesel, the ABE-diesel operating attributes in a CO 

engine considerably reduce the production of soot 

particles and increase ultimate particle degradation. 

Additionally, a greater amount of air may be drawn into 

the spray from upstream due to the prolonged flame lift-

off duration and ignition latency period [23]. 

Overview of machine learning prediction 

In recent years, the field of machine learning has 

made a lot of progress, and techniques like artificial 

neural networks (ANN), support vector machine (SVM), 

random forest (RF), extreme gradient (XG) Boost, and 

deep neural networks (DNN) have emerged 

rapidly [24]. Integrating engine research with machine 

learning modeling methodologies can enhance the 

calibration of the engine and the identification of the 

effective zone and minimize the trials and 3D 

simulations [25]. Machine learning (ML) is one of the 

cutting-edge developments in the field of artificial 

intelligence (AI). Machine learning algorithms (MLAs) 

are plentiful; they all involve the same repetitive 

application of mathematical formulas [26]. MLAs are 

classified into four distinct categories, which are very 

significant [27]. In MLAs, the unsupervised learning 

technique is used to identify the hidden pattern of data 

when a training dataset is not available for 

investigation. The supervised learning method is used 

to anticipate data patterns when a designated training 

dataset is available. When some pieces of information 

are missing from the training dataset, supervised 

learning can be transformed into semi-supervised 

learning. When analyzing a data pattern and receiving 

input from an outside source, MLAs use the 

reinforcement learning technique [28]. The use of AI in 

bioenergy processes is extremely limited. In addition, 

there is a shortage of research that addresses the 

potential of machine learning techniques for making 

predictions and enhancing efficiency. Researchers 

have found that ML shows considerable promise for 

overcoming obstacles to expanding bioenergy 

production [29]. There is also a lack of data on the 

effectiveness of methyl acetate and biodiesel in CI 

engines. Therefore, this article uses ternary fuel to 

address these gaps in the literature. The ternary fuel 

has been compared on several important metrics. 

These performance parameters are predicted using 

cutting-edge ML methods. 

Significance of the present work 

Contrary to the existing literature, this study 

ventures into unexplored territory by examining the 

potential of methyl acetate additives as a viable 

substitute in CI engines. It goes beyond the limited 

studies on the impact of methyl acetate inclusion in 

diesel and Simmondsia Chinensis oil methyl ester 

(SCOME) combinations and explores the influence of 

EGR and injection time with variable projection using 

various ML systems. The objective is to employ these 

algorithms in analyzing the emission and performance 

attributes of a diesel engine operating on blends of 

methyl acetate-diesel fuel fortified with antioxidants. 

This research conducts a comprehensive analysis to 

evaluate the predictive performance of neural 

networks, k-NN, support vector machines, linear 

regression (LR), and Long Short-Term Memory (LSTM) 

methods in comparison to commonly employed 

techniques. The evaluation is based on the R2 metrics. 

This paper proposes the utilization of a deep learning 

algorithm, namely an LSTM model, as a novel 

approach for predicting engine emissions and 

performance. 

 
 

MATERIAL AND METHODS 

Evaluation of test samples 

Table 1 lists the key features of biofuel derived 

from Simmondsiaceae shrub seedlings, as well as the 

assessment variants. Because of the elevated fluidity 

and content of the SCO, its simple usage may result in 

injection problems. As a result, the transesterification 

process was modified in the conversion of SCO to 

reduce its consistency and concentration. Merck 

Millipore supplied C3H6O2. A ternary mixture of C3H6O2, 

diesel, and biodiesel was created. By combining diesel 

with biodiesel, binary variation was created. The diesel 

content in the two combinations was 70% and 50%, 

accordingly. The ternary blends were referred to as 

D50SCOME30MA20 (Diesel 50% + SCOME30% + 

Methyl Acetate 20% by volume) is the MA20 blend. 

D70SCOME30 (Diesel 70% + Biodiesel 30% by 

volume) is the binary combination. 

Experimentation equipment and configuration 

Figure 2 depicts the experimental configuration. 

The Kirloskar TV1 CI engine was used for evaluation, 

which was a mono-cylinder, 4S, VCR-CI engine 

coupled to a dynamometer. In compliance with Nira i7r 

rules, it was restructured with the requisite receptors, 

sensors, and an accessible ECU to provide electronic 

injection. An AVL DIGAS 444N tester was used for 

determining NOx, while an AVL 437C smoke meter was 

used to detect smoke (SO). To achieve the injection 
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Table 1. Characteristics of test fuels. 

Property Standard Diesel SCOME D70 SCOME30 D50 SCOME30 MA20 

Density (kg/m3) ASTM D 1298 832 877 846 873 
Kinematic viscosity @40°C (cst) ASTM D 445 2.89 5.12 3.85 3.51 

Flash Point (°C) ASTM D 92 69 152 96.9 98.7 

Cetane Index (CI) ASTM D 976 47 51 - - 

Calorific Value (MJ/kg) ASTM D 240 42.5 38.21 41.28 39.12 

 

 
Figure 1. Schematic layout of experimental setup. 

 

parameters needed for the assessment, a CRDI was 

required. The diesel delivery line was changed to link to 

the CRDI framework, and a high-pressure pumping 

was added to the fuel filtration. This serves as both a 

diesel holding reservoir and a pressure controller for 

the injection equipment. To regulate pressure, a rail 

pressure sensor is connected to the Nira i7r ECU. 

Although the original injector was unable to manage the 

much-increased injection pressures used by CRDI, a 6-

hole solenoid-regulated nozzle was chosen to complete 

the job. The ECU was used to alter the first sensors and 

actuators to guarantee that every part worked properly. 

If the engine runs properly, it is termed diagnostically 

competent. Table 2 summarises the experiment engine 

settings. 

Table 2. Technical specification. 

Make and Model Kirloskar, TV1 

Cylinders & Stroke 1 & 4 
Bore  87.5 mm 
Stroke length 110 mm 
Swept volume 661 cc 
Speed 1500 rpm 
Rated output 3.5 kW at 1500 rpm 
CR 1:17.5 
Cooling method Water-cooled 
IT, CA bTDC 23° 
FIP 600 bar 

EGR Setup 

The EGR method is used to lower the in-cylinder 

and total temperatures of the charge, which in turn 

diminishes the emissions of NOX. This also makes EGR 

denser, which means its overall volume increases. A 

portion of the outlet gas is routed via the exhaust gas 

recirculation cooler and then into the air inlet. As the 

H2O in the exhaust gas recirculation cooler stays at the 

same temperature, it functions as a thermal replacer, 

taking in the heat from the outlet gases that are being 

held back. Here, the discharge was subjected to a 

temperature reduction of 36 °C. The EGR valve 

regulates the amount of air that is recycled through the 

engine. The orifice size determines the exhaust gas 

flow rate. The best way to start the operation was to 

send the recycled exhaust gas to the input port. Eq. (1) 

was used to calculate the amount of EGR rate. 

ake

exhaust

CO
EGR

CO
2 int

2

( )
% 100

( )

 
=  
 

   (1) 

The AVL 444 N gas equipment, renowned for its 

precision, was implemented to determine the amount of 

CO2 being released. This was achieved by adjusting 

the outlet discharge until the amount of incoming 
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carbon dioxide met a certain value, ensuring accurate 

measurements. [30]. 

Experimental procedure 

The baseline emissions and performance 

characteristics from the perspective of replacing 50% of 

the diesel volume with biodiesel. Tests were conducted 

on a binary blend that contained 70% diesel and 30% 

biodiesel. Compared to baseline diesel, smoke 

emissions were greater, and performance was worse. 

Therefore, we employed a well-established additive-

blending approach to reduce tailpipe smoke below 

diesel operation levels. The methyl acetate was chosen 

for this study because of its similar properties to diesel. 

The study aims to replace 50% of the volume of diesel 

with an alternative fuel. We kept the diesel volume 

constant, lowered the biodiesel by 20% vol., and 

balanced it with methyl acetate. The ternary mix 

included 50% diesel, 30% SCOME, and 20% methyl 

acetate. Compared to the binary option, the ternary mix 

operation improved combustion and reduced smoke 

emissions below diesel. But the ternary blend did more 

tests at full load, changing the fuel injection time (FIT) 

(23°bTDC, 21°bTDC, and 19°bTDC) and the exhaust 

gas recirculation (10%, 15%, and 20%) to find the best 

setting for lowering NOx and smoke emissions, as well 

as producing better performance. The study used 

diesel, two binary, and one ternary blend at normal 

operating conditions of 23º bTDC without EGR. Based 

on the examination, the ternary blend 

(D50SCOME30MA20) gave the best performance 

among the other blends at a normal setting. It is nearly 

closer to baseline fuel. Consequently, we conducted 

enhancement tests on the ternary blend of 

D50SCOME30MA20 (MA20) at compression ratio 

(CR19), and injection pressure (IP 600 bar) remained 

constant. Conducted the three trials on the same day 

and in the same weather conditions to establish 

consistency. 

Machine Learning (ML) algorithms 

ML is a recurrently employed form of AI technique. 

Artificial intelligence (AI) is widely regarded as an 

appealing and widely embraced technology for its 

ability to effectively identify and address various 

application domains, owing to its exceptional capacity 

for achieving high levels of accuracy [27]. The system 

is designed to possess the capacity for autonomous 

observation and subsequent prediction of unknown 

reactions. Without a doubt, user attributes and the 

success of their training have a direct impact on the 

effectiveness of ML algorithms [29]. The current study 

delves into a comprehensive analysis of 4 distinct ML 

algorithms. The four machine learning models 

discussed in this context are LR, neural networks (NN), 

SVM, and LSTM. All algorithms are executed with 

Rapidminer Studio Version 9.6. The grid investigation 

methodology is employed in this research to predict the 

model parameters. The algorithms employed in this 

study are utilized to forecast engine responses, namely 

BSEC and BTE, as well as NOx, CO, HC, and smoke. 

During the training process, three specific inputs are 

utilized, namely engine test fuels, FIT, and EGR rates. 

The study utilized a dataset including nearly 288 data 

points. The dataset was partitioned randomly using the 

shuffled sample technique in the methods. The training 

phase of the algorithms utilized 80% of the available 

data points, while the remaining 20% was allocated for 

the testing phase. 

 
 

ANALYSIS OF ENGINE OUTPUT PARAMETERS 

Combustion investigation 
In-cylinder pressure analysis 

Figure 2 illustrates the in-cylinder pressure (ICP) 

discrepancies observed at various crank angle (CA) 

sites for the examined variations. Under the same 

circumstances, Diesel, D70SCOME30, D50SCOME50, 

and D50SCOME30MA20 were 69.96, 69.82, 69.29, 

and 69.80 bars. The extended ignition delay of the 

MA20 variation, where more fuel ignites impulsively, led 

to a higher ICP compared to the binary combination. At 

23°, the PCPs for 10%, 15%, and 20% exhaust gas 

recirculation were 69.29, 68.99, and 67.55 bar. At FITs 

of 21° and 19°, the ICPs for exhaust gas recirculation 

levels of 10%, 15%, and 20% were 66.04 bar, 

66.95 bar, 65.19 bar, 62.99 bar, 61.69 bar, and 

60.46 bar. Retarding FIT from 23° to 19° at any exhaust 

gas recirculation rate results in a drop in the ICP. At 

10% EGR, the ICP decreased by 9%. Delayed ignition 

reduces fuel burning due to the bTDC drop, resulting in 

less uniform volume ignition and a lower ICP [31]. The 

EGR levels are enhanced from 10% to 20%, and PCP 

is reduced further at any given injection timing. For 

instance, at FIT of 23°bTDC, the PCP dropped by 2.5%. 

This is because the discharge emissions increased the 

specific heat, leading to a decrease in PCP [17]. 

Heat release rate analysis (HRR) 

Figure 2b reveals HRR disparities at different 

crank inclinations for the evaluation fuels. The HRR for 

Diesel, D70SCOME30, D50SCOME50, and 

D50SCOME30MA20 were 45.63 J/°, 43.08 J/°, 

40.43 J/°, and 48.13 J/°, correspondingly. Here, the 

MA20 blend portrayed higher HRR, which is resultant 

of the collective effect of lengthier ignition duration and 

better-oxygenated circumstances that increase the 

flame speed in the course of combustion, resulting in 

elevated HRR values [32]. When Increasing EGR 
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Figure 2. (a) ICP, (b) HRR, (c) BTE, and (d) BSFC for MA20 

variant at various FIT and EGR rates. 

levels and decreasing injection time cause the HRR 

graph to shift from left to right. EGR levels of 10%, 15%, 

and 20% at 23° have heat release rates of 48.51 J/°, 

51.21 J/°, and 53.84 J/°. Similarly, for FIT values of 21° 

and 19°, HRRs are 47.56 J/°, 47.73 J/°, 49.93 J/°, 49.42 

J/°, 49.45 J/°, and 52.07 J/° at EGR rates of 10%, 15%, 

and 20%. When changing the injection time from 23° to 

21°, the HRR's peak point decreased. The HRR 

decreased from 48.51 to 47.56 J/° at 10% EGR. The 

decrease in injection time from 21° to 19° increased 

HRR. Due to a decrease in injection time, the FIT 

retards from 23° to 21°, reducing premixed combustion 

fuel usage. This reduces fuel consumption and 

increases heat release.[33]. A longer ignition delay due 

to retarded FIT increased the early mixed-period 

burning percentage and HRR excesses. HRR 

optimization occurred when EGR rose from 10% to 

20%. HRR improves by 10% at 23°, but EGR rises from 

0% to 20%. The EGR's impact prolongs ignition lag. 

The increase is due to the preliminary mixed-burning 

step using supplemental fuel. Similar findings were 

reported. [20]. 

Performance investigation 

Brake thermal efficiency 

Figure 2c shows the D50SCOME30MA20 blend's 

brake thermal efficiency at various FIT and exhaust gas 

recirculation settings. Diesel, D70SCOME30, 

D50SCOME50, and D50SCOME30MA20 had BTEs of 

34.21%, 32.63%, 30.80%, and 33.53% at optimal 

output and engine standard specifications. The 

D50SCOME30MA20 mix had 2.3% greater BTE than 

the D50SCOME50 blend due to improved low heating 

value, atomization, and inborn O2, which accelerated 

combustion. Biodiesel ignites faster, especially during 

flame expansion, due to its higher thermal potential and 

oxygen content. [34]. The value of BTE is 32.12%, 

31.96%, and 29.75% at 23° with EGR settings of 10%, 

15%, and 20%. The BTE is 33%, 32.73%, 31.14%, 

31.75%, 31.16%, and 28.99% at 21° and 19° FITs. 

According to Figure 2c, the tertiary mix delivered at 21° 

had the highest BTE, 2.5% more than that provided at 

23° at the same EGR level. HRR studies support this. 

The ternary mix at 21° bTDC recovers more outputs 

and dissipates thermally faster, increasing BTE. 

Extended exhaust gas recirculation lowers the thermal 

efficiency of the ternary mix brake system. Because 

exhaust gases hinder combustion, BTE is lower [30]. 

Brake-specific fuel consumption 

Brake-specific fuel consumption (BSFC) is a 

crucial measure of fuel efficiency for engines that 

generate rotational power. It quantifies how effectively 

the engine converts fuel into work, making it a key 

metric in our study. The BSFC measure's calorific value 

(CV), a significant biodiesel property, plays a vital role 

in this process. Reduced calorific values increase fuel 

consumption to provide the same power output; 

therefore, higher CVs reduce BSFC, indicating better 

fuel efficiency [35]. It's important to note that although 

BTE and BSFC have an adverse connection, diesel 

with a reduced BTE has a higher BSFC. As a 

consequence, the rationale for the changes in BTE 

among biodiesel, biodiesel-alcohol combinations, and 

diesel applies to BSFC as well. This reaffirms the 

scientific rigor and validity of our research. [21]. 

Figure 2d provides a practical perspective, showcasing 

the D50SCOME30MA20 variant's BSFC at different FIT 

and exhaust gas recirculation levels. Diesel, 

D70SCOME30, D50SCOME50 combination, and 

D50SCOME30MA20 mixture had BSFCs of 0.247, 

0.28, 0.27, and 0.258 kg/kW-hr at stated capacity and 

engine standard characteristics. D50SCOME30MA20 

has a lower BSFC than D50SCOME50. Due to its 

higher O2 and CV, the ternary type uses less fuel to 

create similar energy. At 23° bTDC, the engine's BSFC 

was 0.28, 0.29, and 0.31 kg/kW-hr for 10%, 15%, and 

20% EGR. At 10%, 15%, and 20% EGR, the engine's 

BSFC was 0.264, 0.272, 0.282, 0.273, 0.28, and 

0.291 kg/kW-hr at FITs of 21° and 19°. Initially, the 

tertiary mixture BSFC dropped. We found that delaying 

the FIT from 23° to 21° and then to 19° increased it. 

Since the FIT was adjusted from 23° to 21°, this 

happened. This improvement allowed full burning by 

locating the combustion process at TDC. Thus, the 

engine needed less power to reach the speed. 

Lowering FIT from 21° to 19° caused heat dissipation 

lowered output and increased BSFC during the 

expansion stroke. For the ternary mix, higher EGR was 
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due to deterioration, which changed the air-fuel 

proportion and reduced burning, increasing BSFC. [19]. 

 
Figure 3. (a) NOx, (b) HC (c) CO, and (d) Smoke for MA20 at 

different FIT and EGR levels. 

Exhaust analysis 

NOx emission 

Figure 3a shows nitrogen oxide differences for the 

D50SCOME30MA20 mix at different FIT and EGR 

levels. Diesel, D70SCOME30, D50SCOME50 mix, and 

D50SCOME30MA20 blend emitted 1859, 1856, 1847, 

and 1913 ppm of NOx under specified power 

circumstances and engine stock settings. The ternary 

mix emitted more NOx than the binary form because 

methyl acetate stimulates burning, raising gas 

temperatures and NOx. Biodiesel burns more 

thoroughly due to its high oxygen content, raising peak 

temperatures and NOx emissions [36]. Concerning 

EGR values of 10%, 15%, and 20%, at 23° bTDC, the 

NOx emission was 1536, 1100, and 642 ppm, 

correspondingly. Similarly, at a FIT of 21° bTDC and 

19° bTDC, the nitrogen oxide values were 1231 ppm, 

1012 ppm, 540 ppm, 1088 ppm, 753 ppm, and 335 

ppm, respectively, at EGR rates of 10%, 15%, and 

20%. Delaying injection until 19° bTDC instead of 23° 

bTDC significantly reduced NOx emissions. The 

exhaust gas recirculation rate was set at 10%, and the 

injection time was reduced from 23° to 21° bTDC, 

reducing NOx emissions by 17%. Delaying the FIT 

reduced NOx by 30%. The original analysis found that 

a ternary mix at 21° bTDC increased centralized 

burning. A shorter ID time and lower fuel consumption 

helped keep nitrogen oxides low [35]. The retardation 

of the explosive process by 21° to 19° bTDC displaced 

the combustion mechanism, changing the TDC point. 

This improvement allowed LTC mode adoption, 

reducing nitrogen oxide emissions significantly [22]. 

The charge mixture's oxygen concentration 

disproportionately affected NOx formation, which 

accelerated chemical processes and boosted 

combustible temperatures. The charge mixture's 

oxygen content affected NOx production. Raising the 

EGR rate from 10% to 20% for a certain injection period 

reduced NOx output by more than twice. The dilutive 

impact of increased thermally sensitive exhaust gases 

reduced exhaust temperatures [37]. In addition, the 

chemical reaction speed was impacted by the restricted 

supply of O2. 

Hydrocarbon 

Figure 3b shows the D50SCOME30MA20 

variant's HC at different FITs and EGRs. HC emissions 

at specified power output and engine settings for 

Diesel, D70SCOME30, D50SCOME50 mix, and 

D50SCOME30MA20 blend had HC emissions of 42, 

48, 56, and 40 ppm, respectively. This shows that 

ternary variants reduce HC. In the diesel/SCOME 

combination, methyl acetate increased O2 levels. This 

sped up the oxidation reaction even in areas with a lot 

of fuel, breaking down HCs that were not fully depleted 

and lowering HC emissions. At 23° bTDC, HC emission 

was 47, 53, and 69 ppm for 10%, 15%, and 20% EGR. 

In the same way, HC emission was 49 ppm at FITs of 

21° bTDC and 19° bTDC, 59 ppm at 76° bTDC, and 53, 

61, and 83 ppm at 10%, 15%, and 20% EGR rates. 

Increasing exhaust gas recirculation (EGR) to 10% and 

fuel injection time (FIT) from 23° to 19° bTDC increases 

hydrocarbon (HC) emissions by 11%. Because of the 

delayed injection, the membrane was more likely to get 

wet, and fuel was held in poor combustion zones. This 

produced unburned or partially burned HC [30]. 

Increasing EGR intensity from 10% to 20% resulted in 

increased HC emissions. This tendency to release HC 

is caused by exhaust gases lowering the gas 

temperature. This makes it difficult for hydrocarbons to 

split into carbon particles, releasing more HC [31]. 

Carbon monoxide 

Figure 3c shows CO emission differences in the 

D50SCOME30MA20 blend at different FIT and EGR 

settings. Diesel, D70SCOME30, D50SCOME50 mix, 

and D50SCOME30MA20 blend had volume-based CO 

emissions of 0.152, 0.171, 0.194, and 0.133%. In the 

diesel/SSCOME blend, methyl acetate decreased CO 

emissions more than in the D50/SCOME50 blend. 

Methyl acetate aids CO-to-CO2 conversion because it 

transports extra O2 during combustion [38]. It’s found 

that the CO emission at 23° bTDC was 0.161% vol., 

0.326% vol., and 0.912% vol., respectively, when 

considering the EGR percentages of 10%, 15%, and 

20%. Similarly, at FITs of 21° bTDC and 19° bTDC, the 
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CO was 0.217% vol., 0.343% vol., 1.231% vol., 0.244% 

vol., 0.374% vol., and 1.613% vol., respectively, at EGR 

rates of 10%, 15%, and 20%. With delayed FIT, CO 

levels increased but decreased with higher EGR rates. 

CO climbed 3.5% when the FIT was shortened from 

23°bTDC to 19°bTDC at 10% EGR. Due to a shorter 

delay period, the A/F combination had less duration, 

potentially boosting CO emissions. However, 

increasing EGR frequency greatly lowered CO 

generation [39]. In a specific scenario of FIT 23°bTDC, 

increasing the EGR from 10% to 20% resulted in a 60% 

increase in CO. EGR's reduced air input may have 

generated an oxygen-deficient combustion zone, 

limiting CO oxidation. Lower gas temperatures reduced 

the OH-reactive concentration. However, increasing 

EGR frequency greatly lowered CO generation [40]. 

Smoke opacity 

Figure 3d shows the D50SCOME30MA20 mix SO 

at different FITs and EGRs. Diesel, D70SCOME30, 

D50SCOME50 mix, and D50SCOME30MA20 blend 

had SO at specified power levels of 57.4%, 64.2%, 

60.8%, and 51.2%, respectively. The ternary mix has 

far lower smoke opacity than the binary form. Alcohol 

has inherent O2 molecules that provide O2 for 

combustion, reducing smoke [34]. At 23° bTDC SO, 

EGR levels of 10%, 15%, and 20% were 52%, 62.5%, 

and 83.2%, respectively. For FITs of 21° and 19° bTDC, 

the smoke opacity was 56.9%, 66.5%, 88.7%, 61.2%, 

69.2%, and 92.5% at EGR rates of 10%, 15%, 20%, 

respectively. The ternary variant's changes increased 

smoke production compared to the default. At 10% 

EGR, decreasing FIT by 23° to 19° bTDC increased SO 

by 15%. Due to reduced in-cylinder gas pressures 

during delayed intake latency, the A/F proportion 

changes. This increases smoke from carbon 

oxidation [5]. Even more than the FIT delay, rising EGR 

levels raised SO. Increasing EGR from 10% to 20% at 

23° bTDC increased SO by 62.5%. Increased exhaust 

gas recirculation due to decreasing O2 levels hinders 

combustion [36]. 

MLAs prediction analysis 

In this study, the application of deep learning, 

namely the LSTM model, is utilized as the optimization 

framework. LSTM was used to predict BTE, BSFC, CO, 

HC, smoke, and NOx using FIT and EGR variables. 

First, we train the LSTM model with 288 experimental 

observations. The network's performance was 

evaluated using a training dataset of 80% of the 

experimental data, a validation dataset of 10%, and a 

testing dataset of 10%. These may be assessed using 

training and testing of MRE and R2-values. After that, 

the stored network generates output values for the 25 

randomly picked input values. Eq. (2) illustrates the 

correlation coefficient (R2), while Eq. (3) illustrates the 

MRE. Where ‘ti’ is the target value and ‘oi’ is the 

theoretical output value, 
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Let 𝑡i and 𝑜i represent the predicted and 

measured values, respectively. t denotes the mean of 

the measured values, while n represents the 

observations. This method contains knowledge of a 

particular model's anticipating power regarding a 

certain dataset. The coefficient of determination, 

denoted as R², has a range of values from 0 to 1. An R² 

number nearing 1 signifies a higher level of 

performance [41]. 

 
Figure 4. Machine learning algorithm models flow chart. 

Evaluation of prediction models 

R2 levels are calculated by altering the quantities 

of training and evaluating information. The R2 for 

various training and assessment information 

proportions demonstrates that the model is consistent 

beyond 80:20 ratios. The score approaching 100% 

indicates that the model can reflect all variance in 

output information. The hypothesized approach is 

contrasted to the R2 values of models developed with  
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linear regression, support vector machine, neural 

networks, K-nearest neighbors (K-NN), and Deep 

Learning (LSTM) approaches. Figure 5a depicts model 

evaluations according to the R2 value. The suggested 

model surpasses the previous approaches and yields 

excellent outcomes. The LR, NN, SVM, and LSTM 

models best fit the narrative or hypothesis of the current 

examination. At the same time, Figure 5a includes a 

broad comparison to provide a comprehensive 

overview of machine learning models. Four distinct ML 

models predicted values are close to unity. K-NN, PR, 

GP, and RVM models predicted values are very low 

compared to the unity. Therefore, this model is not 

suitable for the current investigation. The R2 values 

were determined to be 0.92 and 0.96, respectively. The 

results of the LSTM replication demonstrate its capacity 

to anticipate crucial features accurately. The MRE 

values for the stated features range from 1.74% to 

4.68%, Figure 5b shows that FIT, EGR, BTE, BSFC, 

and NOx strongly correlate with the target column. 

Even little changes in these variables affect the target 

column. CO, HC, and smoke are weaker but favorably 

connected to the target column. Thus, changes in these 

columns may not impact the target column. FIT, EGR, 

BTE, BSFC, and NOx predict the target column well, 

while CO, HC, and smoke do not. In future modeling 

and analysis, knowing how qualities relate to the target 

variable is vital. 

 
Figure 5. (a) Comparison of R2 value and 5 (b) Heatmap 

representing correlation for Machine Learning Algorithms. 

Validation of the LSTM model 

The methodology's practicality must be validated 

before deployment. The Long Short-Term Memory 

(LSTM) model improved engine operating settings for 

experimental studies. The program generated 

expected significance levels from replications during 

failure periods. Figure 4 illustrates the training process 

through a flow chart, and Table 3 was used to verify 

these results. Eq. (4) calculates the value error 

percentage. 

( )E
Observed value-Predicted value

Percentage of error % 100
Observed value

= 

     (4) 

The best results can only be obtained through 

appropriate verification. To account for LSTM fuel 

injection time (FIT) and EGR, the largest input variable 

maintained from testing was the mean. Equation error 

rates range from 0.2 to 5.7%. The analysis found fewer 

than 6% inaccuracies in emissions and efficiency 

projections. LSTM makes it easier to understand how 

elements interact. Thus, the Long Short-Term Memory 

(LSTM) model may predict diesel engine 

characteristics. Machine learning algorithms may 

predict pollutants and operational factors. Other 

quantitative and computational methods may struggle 

with the problem's complexity and diversity. 

 
 

CONCLUSION 

 

The research work outlines the methyl acetate, 

FIT, and EGR settings affect CI engine parameters in 

diesel and SCOME variations, as found below. 

MA20 injected at 21°bTDC, and 10% EGR had 

the highest BTE (33%), correlating with the remaining 

operating conditions. However, the BTE was somewhat 

lower than that of the MA20 blend at default settings. In 

MA20 fuel, 21°bTDC and 10% exhaust gas 

recirculation reduce nitrogen oxides in comparison to 

other fuels. The MA20 mix decreases the SO by 11% 

at 21°bTDC and 10% exhaust gas recirculation. 

However, it was 1% less than baseline diesel. Later, 

FIT and higher EGR resulted in increased hydrocarbon 

and CO outflow. The LSTM methods estimate engine 

output characteristics that are close to unity. LSTM 

showed the highest R2 and MRE values, which are 

0.961 and 1.74%, respectively. All measurements 

combined show that the other algorithms predict engine 

responses the least. When considering various 

injection timings and EGR rates with the MA20 mix, 21° 

bTDC and 10% EGR are generally the best operating 

conditions. The results suggest that a Simmondsia 

Chinensis seed biodiesel mix with MA20 volume can 

reduce pollutants in CRDI CI engine applications. 

Choosing the best fuel injection time and EGR 

rate to reduce NOx and smoke emissions depends on 

many parameters, including engine type, fuel 

properties, and engine performance. According to the 

provided facts, decreasing emissions may begin with 

delayed fuel injection from 23º to 19º bTDC. In contrast, 

brake thermal efficiency, fuel consumption, and engine 

power output should be considered when selecting 

optimal operating conditions. Balancing emissions 

reduction and engine performance is essential. The 

delayed injection resulted in a decrease in NOx, which 

in turn led to a reduction in engine performance. 

Therefore, to evaluate emissions and performance, we 
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suggest conducting a series of tests or simulations 

under 21º bTDC at 10% EGR [42,43]. 

 

 

NOMENCLATURE 

ASTM American Society for Testing and Materials 
bTDC Before Top Dead Centre, CA 
BSFC Brake Specific Fuel Consumption (kg/kW-hr) 
BTE Brake Thermal Efficiency, % 
CA Crank Angle, deg 
CI Cetane Index 
CR Compression Ratio 
CRDI Common Rail Direct Injection 
CV Calorific value 
SCOME Simmondsia Chinensis Oil  Methyl Ester 
MA Methyl Acetate 
D70SCOME30 Diesel-70%, SCOME-30% 
D50SCOME50 Diesel-50%, SCOME -50% 
D50SCOME30MA20 Diesel-50%, SCOME - 30%, Methyl Acetate -

20% 
ECU Electronic Control Unit 
VCR Variable Compression Ratio 
HC Hydrocarbons, ppm 
CO Carbon monoxide, % vol. 
HRR Heat Release Rate, J/deg 
ICP In-cylinder pressure, bar 
NOx Nitrogen oxides, ppm 
PPM Parts Per Million 
MLAs Machine Learning Algorithms 
LSTM Long Short-Term Memory 
NO Neural Network 
LR Linear Regression 
SVM Support Vector Machine 
KNN K-Neural Network 
PR Polynomial Regression 
GP Gaussian Process 
RVM Relative Vector Machine 
R2 Squared Correlation 
MORE Mean Relative Error 
RMSE Root Mean Square Error 
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NAUČNI RAD 

PREDVIĐANJA MAŠINSKOG UČENJA O 
IZLAZNIM PARAMETRIMA MOTORA SA 
COMMON RAIL DIREKTNIM 
UBRIZGAVANJEM GORIVA TERNARNE 
MEŠAVINE 

 
Cilj ovog rada je da algoritmom mašinskog učenja (MLA) predvidi emisije CRDI (common 

rail direktno injektor) motora i performansi koristeći alternativnu sirovinu. Istraživanja su 

započeta trokomponentnom mešavinom dizel-SCOME-metil acetat. Motor je testiran sa 

vremenom ubrizgavanja goriva (FIT) od 23°, 21° i 19° bTDC sa nivoima recirkulacije 

izduvnih gasova (EGR) od 10%, 15% i 20% pri procenjenoj produktivnosti snage. 

Usporavanje vremena ubrizgavanja i povećanje EGR-a smanjuju vršni pritisak u cilindru. 

Radni uslovi sa maksimalnim BTE su bili 21° bTDC i 10% EGR. Podešavanje vremena 

ubrizgavanja i EGR smanjilo je azot oksid u odnosu na osnovnu liniju. Prozirnost dima 

bila je 1% niža na 21° bTDC i 10% recirkulacije izduvnih gasova nego u konvencionalnom 

dizel pogonu. Usporeno vreme ubrizgavanja i recirkulacija izduvnih gasova povećavaju 

emisije HC i CO. Međutim, MLA predviđa rad motora CI i svojstva pražnjenja. Model 

dugotrajne kratkoročne memorije (LSTM) predviđa izlazne karakteristike motora sa 

korelacijom na kvadrat (R2) od 0,92 do 0,96. Istovremeno, vrednosti srednje relativne 

greške (MRE) kretale su se od 1,7 do 4,7%. Ovi rezultati pokazuju da LSTM modeli 

pružaju superiorne prediktivne mogućnosti, posebno kada se razmatraju brojne 

promenljive za analizu reakcija motora. 

Ključne reči: gusta membrana; prozračna membrana; stepen apsorpcije; 
propustljivost biodizel; metil acetat; CRDI motor; EGR; algoritmi mašinskog 
učenja. 
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INFLUENCE OF TEXTURE AND 
NANOMATERIALS ON THE PRODUCED 
NATURAL FIBER CHARACTERISTICS 

 
Article Highlights  

• Influence of nano strontium titanate and zinc titanate on composite properties 

• Enhancing anti-inflammatory of composite by doping nanoparticles 

• Innovation of machine learning algorithms and prediction models LR, NN, K-NN 

•  SVM, and LS Increasing bactericidal properties and durability by nanomaterials TM 

• Enhancing strength and abrasion resistance of the composite 

 
Abstract  

This research investigated the type of texture and nano-materials and 

evaluated the effect of these two parameters on the final properties of the 

fabric. The 100% warp-weft cotton fabric and electrospun cellulosic nano 

fabric, which are treated with strontium titanate and zinc titanate, are 

produced using a specific method. Scanning electron microscopy and 

elemental mapping proved the existence of nanoparticles and helped to 

analyze the morphology of produced samples. The result of bactericidal 

property and its durability during washing cycles against Escherichia coli 

and Bacillus cereus (two common negative gram-negative/positive bacteria) 

was excellent. The strength and abrasion resistance of the treated 

specimens is higher than the untreated specimens due to the presence of 

nanoparticles and their special structural characteristics and the bond 

formation of these nanoparticles with fiber. On the other hand, the anti-

inflammatory property of samples enhanced in comparison with raw 

samples due to the reduction of the production of inflammatory cytokines by 

nanomaterials. 

Keywords: strontium titanate; zinc titanate; anti-inflammatory; 
electrospinning, texture. 

 
 

In the ever-evolving world of textile 

manufacturing, researchers are constantly exploring 

innovative methods to enhance the strength and 

durability of fabrics. Two nanomaterials that have 

recently gained attention are strontium titanate and zinc 

titanate. These nanopowders have shown great 

potential in improving the strength and abrasion 

resistance of textiles and have remarkable properties 

such as bactericidal, self-cleaning, UV blocking, etc. 
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These properties are crucial in various industries where 

maintaining hygiene and preventing the spread of 

bacteria is of utmost importance [1—4]. 

Strontium titanate (SrTiO3) and zinc titanate 

(ZnTiO3) are both perovskite-type compounds that 

possess excellent electrical and mechanical properties. 

When incorporated into fabric finishes, these 

nanopowders can enhance the properties of textiles. 

The small size and high surface area of the 

nanoparticles allow for better penetration and adhesion 

to the fabric fibers, resulting in improved performance 

[5,6]. 

Strontium titanate is known for its high dielectric 

constant and piezoelectric properties. When applied as 

a fabric finish, it forms a thin, uniform layer on the fabric 

surface, which helps to strengthen the fabric structure. 

Additionally, strontium titanate nanoparticles can  

http://www.ache.org.rs/CICEQ
mailto:davodi@iauyazd.ac.ir
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impart anti-static properties to the fabric, reducing the 

accumulation of static charges and preventing 

discomfort or damage caused by electrostatic 

discharge [7]. 

Zinc titanate, on the other hand, possesses 

excellent photocatalytic properties and can absorb 

ultraviolet (UV) radiation. By incorporating zinc titanate 

nanopowders into fabric finishes, textiles can become 

more resistant to UV degradation, thus prolonging their 

lifespan. This makes them suitable for outdoor 

applications where exposure to sunlight is common [8]. 

A study published in the Journal of Natural Fibers 

[9] examined the impact of nano strontium titanate-

treated cork web on UV-blocking and strength of cork 

webs. The results showed a significant increment in 

UV-blocking property and improvement in tensile 

strength. This was attributed to the enhanced adhesion 

between the web and the nanoparticles, which resulted 

in a more robust fabric structure. 

Another study conducted by Zohoori et al. [10,11] 

investigated the effects of incorporating strontium 

titanate and titanium dioxide nanopowders into cotton 

fabrics. The researchers found that the treated fabrics 

exhibited higher self-cleaning properties. 

In the field of oncology, research studies have 

explored the potential of fabric treated with zinc titanate 

nanoparticles in inhibiting the growth of cancer cells. A 

study published in the International Journal of 

Nanomedicine [12] examined the cytotoxicity of zinc 

titanate-treated fabric on cancer cell lines. The results 

demonstrated selective cytotoxicity, with cancer cells 

experiencing apoptosis while healthy cells remained 

unaffected. This targeted approach holds promise for 

the development of garments that provide comfort and 

potential therapeutic benefits for cancer patients. 

Moreover, studies have been conducted to 

evaluate the durability of the zinc titanate treatment on 

fabric. The fabric samples were subjected to washing 

and rubbing tests to assess the longevity of the 

antimicrobial and cytotoxicity properties. The results 

indicated that the treatment remained effective even 

after multiple wash cycles and abrasion highlighting the 

practicality and durability of fabric treated with zinc 

titanate [13—15]. 

Further studies have explored the durability of the 

nanomaterial finishing on fabric. The fabric samples 

were subjected to washing, strength, and abrasion 

tests to evaluate the longevity of the anti-inflammatory 

properties. Results showed that the treatment 

remained effective even after multiple wash cycles, 

demonstrating the durability and practicality of 

incorporating nanoparticles into fabric treatments [16—

19]. 

These research studies provide valuable insights 

into the potential of zinc titanate and strontium titanate 

as a fabric finish for enhancing the strength and 

abrasion resistance of textiles. By incorporating zinc 

titanate and strontium titanate nanopowders into fabric 

finishes, manufacturers can produce high-performance 

textiles that can withstand the rigors of everyday use. 

Producing nanofibers containing nano zinc titanate and 

strontium titanate has shown great potential in various 

applications such as catalysis, sensor technology, and 

energy storage. However, certain limitations need to be 

addressed for further advancements in this field. One 

major limitation is the difficulty in achieving a 

homogeneous distribution of the nano Zn/Ti particles 

within the nanofiber matrix. This can lead to variations 

in the properties and performance of the resulting 

nanofibers. Another limitation is the lack of 

understanding regarding the mechanism of 

nanoparticle incorporation and its effect on the overall 

structure and properties of the nanofiber. There are 

several potential applications for producing nanofibers 

that contain nano Zn/Sr. One possible application is in 

the field of medicine. These nanofibers could be used 

to develop advanced wound dressings that promote 

faster healing and reduce the risk of infection. Overall, 

the production of nanofibers containing nano Zn/Sr 

opens up possibilities for various applications in 

medicine and environmental protection. 

 
 

MATERIAL AND METHODS 

Materials and devices 

Nano strontium titanate powder (CAS No.12060-

59-2) with a molecular weight of 183.49 particle size of 

<100 nm and density of 4.81g/mL was prepared from 

Sigma Aldrich. Also zinc titanate nano powder with a 

molecular weight of 161.26 and particle size of <100nm 

was prepared from Sigma Aldrich too. The 100% 

bleached cotton fabric with a warp density of 

22 yarn/cm, weft density of 18 yarn/cm, and fabric 

weight of 119.4 g/m2 was prepared from Yazd-Baff 

Company. Bio-renewable succinic acid (CAS No.110-

15-6) as a cross-link factor, Sodium hypophosphite, 

and Schweizer’s reagent was prepared from Merck. 

Euronda ultra-sonic bath model Eurosonic 4D, 350 W, 

50/60Hz (Italy) was used. The tensile strength was 

examined by a tabletop uniaxial testing apparatus 

(INSTRON 3345). A double-head rotary platform 

method was used to study the abrasion resistance 

through ASTM D-3884-09. The specimen’s morphology 

was investigated by scanning electron microscopy 

(SEM-MIRA3-TESCAN), and the samples were 

covered by gold film. 
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Method 

As shown in Table 1, two kinds of texture with 

different percentages of nanomaterials were used. In 

samples A and B, warp/weft fabric was finished one 

with nano strontium titanate and the other with nano 

zinc titanate. In samples C and D, the electrospinning 

fabric (nonwoven) was finished with these two 

nanomaterials. The finishing method of samples A and 

B was as follows: in the first step, the cotton fabric was 

washed with distilled water at 85 °C for 60 min. Then 

the washed fabric was floated in sodium 

hypophosphite/succinic acid as a catalyst/cross-link 

agent (respectively) for 60 min. The ratio of sodium 

hypophosphite/succinic acid was 4/6 (wt). In the next 

step, the fabric was dried at 80 °C for 4 min and 

immediately at 180 °C for 2 min. During the above 

steps, a beaker of nano strontium titanate and a beaker 

of nano zinc titanate suspension were prepared and 

sonicated for half an hour in an ultrasonic bath. Then 

the cured and dried fabric was immersed in these 

suspensions and sonicated for 30 min at 80 °C. Then 

the samples were kept in an oven for 3 min at 100 °C to 

fix nanoparticles and finally finished samples were 

washed in an ultrasonic bath for 10 min to remove un-

bonding nanoparticles. So, samples A and B were 

prepared by this method. The electrospinning method 

was used to produce samples C and D. In this method, 

100% cellulose was dissolved in Schweizer’s reagent 

([Cu(NH3)4(H2O)2](OH)2) and sonicated with 1.5% 

nanomaterials and loaded in a syringe on the 

electrospinning apparatus. The distance between the 

collector and nozzle was 15 cm, the drum speed was 

135 rpm, the feeding rate was 0.5 mL/h, the voltage was 

20 kV, and the traverse speed was 0.4 m/min. So, 

nonwoven fabric is prepared during this method. 

Table 1. Specification of samples. 

Sample Code Texture Type SrTiO3 (%) ZnTiO3 (%) 

A Warp/Weft 1.5 0 
B Warp/Weft 0 1.5 
C Nonwoven 1.5 0 
D Nonwoven 0 1.5 

The technique and condition of the bactericidal 

feature were done through the AATCC 100-2004 

standard versus both Bacillus cereus (a gram-positive 

bacteria) and Escherichia coli (a gram-negative 

bacteria). The bactericidal feature was investigated 

through Eq. (1) as below, where A is the quantity of 

bacteria recovered from the inoculated treated test 

specimen incubated over a day while B is the quantity 

of bacteria recovered from the inoculated treated test 

specimen immediately after inoculation. 

( )
A B

A
The reduction of bacteria % 100

−
=    (1) 

To investigate the tensile property, the samples 

were cut into 5 cm × 3 cm sheets and loaded into the 

apparatus. The experiment was done at a rate of 5 

mm/min. 

Twenty-one male Wistar rats were chosen and 

protected in the same conditions for one day. All tests 

and experiments were  done according to animal rights 

laws. Then the back skin of the rats was shaved and 

coated with produced samples (five rats for each 

sample and one for the control sample, whose back 

was coated with Indomethacin cream as reference 

sample) and tied firmly. 

 
 

RESULTS AND DISCUSSION 

Morphological analysis 

Scanning electron microscopy images of samples 

is illustrated in Figure 1. Figure 1 (A—B) shows that the 

nanoparticles are distributed in fibers. Also, their 

elemental mapping analysis proves the existence of Zn 

and Sr particles and their good distribution on the 

surface of fibers (it must be mentioned that aggregation 

of nanoparticles causes their low effectiveness while 

their good distribution increases their effectiveness). 

Also, as shown in Figure (C—D), the nanofibers are 

formed through electrospinning, which contains 

nanoparticles. By close look, it demonstrates that the 

thickness of nanofibers is about 40 nm, which is very 

good. On the other hand, elemental mapping of these 

nanofibers proves the existence and good distribution 

without aggregation or agglomeration. (The elemental 

mapping of Sr particles is shown with green dots and 

the elemental mapping of Zn particles is shown with red 

dots). 

Bactericidal properties and durability 

Escherichia coli and Bacillus cereus are two 

common negative/positive bacteria, respectively. 

Bacillus cereus is a rod-shaped bacteria found in 

abundance in food and soil and can cause nausea, 

diarrhea, and vomiting syndrome [20]. On the other 

hand, the gram-negative bacteria E.coli can cause 

gastroenteritis, urinary tract infections, neonatal 

meningitis, hemorrhagic colitis, and Crohn's 

disease [21]. Nano ZnO is biocompatible for 

pharmaceutical textile usages [22]. Furthermore, 

nanoparticles of ZnO have unparalleled specifications 

such as photocatalytic properties and bacteriostatic 

effect [23]. As demonstrated in Figure 2, the 

bactericidal properties of all samples against 

Escherichia coli are higher than those of Bacillus 

cereus. This phenomenon is due to the various 

stoutness and thicknesses of the cell walls of bacteria. 

In contrast, the cell wall thickness of Escherichia coli is  
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Figure 1. SEM of samples and elemental mapping of Sr and Zn. 

lower than Bacillus cereus (10—20 nm and 20—40 nm, 

respectively). The bactericidal properties of strontium 

titanate and zinc titanate nanopowders can be 

attributed to their unique composition and structure. 

These powders are composed of tiny particles, typically 

less than 50 nanometers in size, which allows for more 

significant surface area contact with bacteria. When 

these nano powders come into contact with bacteria, 

their structure disrupts the cell walls of the 

microorganisms, preventing their growth and spread. 

Furthermore, these nano powders' high surface area-

to-volume ratio enhances their bactericidal 

effectiveness. The increased surface area provides 

more opportunities for the nano powders to interact with 

bacteria, maximizing their antibacterial action. 

Additionally, the nano-sized particles can penetrate the 

bacteria more effectively, ensuring a higher degree of 

eradication. While the bactericidal properties of 

strontium titanate and zinc titanate nanopowders are 

impressive, their durability is equally essential in 

ensuring long-term effectiveness. In applications where 

these nanopowders are subjected to repeated washing 

cycles, their antibacterial effect must remain intact . 

Durability in antimicrobial materials refers to their ability 

to withstand wear and tear, including exposure to harsh 

conditions such as washing, without compromising 

their antimicrobial properties. For strontium and zinc 

titanate nanopowders, durability is key in maintaining 

their bactericidal effectiveness over an extended 

period. As it was shown, bactericidal durability after 15 

washing cycles was excellent and is more than 93% for 

both gram-negative/positive bacteria. The exceptional 

durability of strontium titanate and zinc titanate 

nanopowders can be attributed to their inherent 

properties and structural characteristics. These 

materials possess high chemical stability, allowing 

them to withstand exposure to various detergents, 

chemicals, and environmental factors without 

degradation. Additionally, their unique structure 

ensures that the antibacterial effect remains intact, 

even under challenging conditions. Comparing the 

bactericidal properties of samples demonstrates that 

warp/weft samples have a little higher antibacterial 

properties in comparison to nonwoven samples, but 

this is not significant and is negligible. On the other 

hand, the bactericidal property of samples that contain 

Sr is higher than the samples that have Zn. Strontium 

titanate and zinc titanate nanopowders share similar 

properties and demonstrate exceptional bactericidal 

effectiveness. However, strontium titanate nanopowder 

exhibits excellent photocatalytic properties, which can 

further enhance its bactericidal action. When exposed 

to light, strontium titanate nanopowder generates 

reactive oxygen species (ROS) that contribute to the 

destruction of bacteria. This photocatalytic property 

makes it particularly effective in environments with 

ample light exposure, such as hospitals or outdoor 

applications. 

 
Figure 2. Bactericidal properties of samples and their washing durability. 
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Strength and abrasion properties 

Fabrics are subjected to various stressors and 

forces during their lifespan, including stretching, 

bending, and abrasion. The strength and abrasion 

resistance of a fabric determine its durability and ability 

to withstand wear and tear. Traditionally, fabric finishes 

like coatings or treatments have been used to enhance 

these properties. However, the introduction of 

nanotechnology has opened up new possibilities for 

fabric finishing. 

This comprehensive research study delves into 

the detailed analysis of the durability and strength of 

textile materials, with a specific focus on abrasion 

resistance and tensile strength of treated and untreated 

fabric samples. This section aims to discover how 

different conditions can enhance the performance of 

fabrics when subjected to stress and wear. To simulate 

regular wear, both sets of fabric samples were 

subjected to abrasion tests. These tests are designed 

to mimic the friction and stress that fabrics endure 

during their lifespan. The durability of a fabric is often 

gauged by its ability to retain integrity and functionality 

after repeated abrasive wear, which reflects on the 

quality of the material for potential uses such as 

clothing, furniture upholstery, or industrial applications. 

The abrasion resistance analysis was done by a 

double-head rotary platform technique through ASTM 

D-3884-09. For each specimen, a rubbing test of 50 

cycles was done and the discrepancy in specimen 

mass before and after abrasion was studied. Once the 

abrasion tests were completed, the weight of the fabric 

samples was recorded. These measurements were 

crucial in quantifying the percentage of abrasion 

resistance. By comparing pre-test and post-test 

weights, we calculated the mass lost due to the 

abrasion, indicating how much of the material was worn 

away. A lower percentage of weight loss signifies 

increased resistance to abrasion, a desirable trait in 

many textile applications. As shown in Table 2, the 

abrasion resistance of the treated specimens is higher 

than the untreated specimens. From the analysis of the 

data obtained, treated samples indicated as A, B, C, 

and D, showcased a significant enhancement in both 

abrasion resistance and tensile strength when 

contrasted with their raw counterparts. This 

improvement is a testament to the effectiveness of the 

nanomaterial treatments employed, contributing to the 

overall performance and lifespan of the fabrics. Within 

the treated samples, a compelling insight was that 

Sample A led the treated warp/weft group with an 

impressive abrasion resistance of 91.68% and a 

30.11% increase in tensile strength. Similarly, in the 

nonwoven category, Sample C outperformed others 

with an exceptional 86.51% abrasion resistance and a 

marked 34.54% improvement in tensile strength. This 

is due to the presence of strontium titanate and its 

special structural characteristics and the bond 

formation of this nanoparticle with fiber. The findings of 

the study illuminate the positive impact that fabric 

treatments can impart on the functional attributes of 

textile materials. The evidence indicates that through 

scientific processing and treatment, even fabrics that 

are inherently less resistant to wear and tension can be 

significantly fortified, thus extending their potential 

applications and service life. The implications of such 

developments hold substantial value for the textile 

industry, which constantly seeks to innovate and 

improve material performance to meet the demands of 

various consumer and industrial markets. 

Table 2. Abrasion resistance and tensile strength of samples. 

Sample 
Fabric weight before 

abrasion (g) 
Fabric weight after 

abrasion (g) 
Abrasion 

resistance (%) 
Tensile 

strength(MPa) 
Improved tensile 

strength (%) 

Raw (warp/weft) 5.896 4.993 84.68 0.694  
A 6.744 6.183 91.68 0.993 30.11 
B 6.193 5.507 88.92 0.862 19.48 

Raw (nonwoven) 4.075 3.188 78.23 0.451  
C 4.842 4.189 86.51 0.689 34.54 
D 4.905 4.173 85.07 0.617 26.90 

 

Anti-inflammatory analysis 

Anti-inflammatory properties in fabric play a crucial role 

in providing relief to individuals with sensitive skin or 

skin conditions. Redness, irritation, and itching are 

common issues that many people face, and these can 

be exacerbated by wearing certain fabrics. However, 

fabric treated with nano strontium titanate and zinc 

titanate contains nanoparticles that possess anti-

inflammatory properties. These nanoparticles help to 

reduce inflammation and soothe the skin, providing a 

much-needed respite for those with skin sensitivities. 

Based on the Winter method [24], before and after 

carrageenan injection, the diameter of the hind paw 

was calculated by a caliper, and every one-hour 

measuring was repeated. The results are shown in 

Figure 3 as an edema diagram. The control sample 

quickly reduced the edema, but samples (A—D) 

demonstrated the anti-inflammatory properties after 

2 h, and after 5—6 h the effect of samples A and C were 

close to each other, while samples B and D had anti-

inflammatory properties but not as well as samples A 

and C. Nano strontium titanate, a compound composed 

of strontium, titanium, and oxygen, is known for its 

unique properties that make it a valuable addition to  
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fabric treatments. When incorporated into the fabric, 

nano strontium titanate enhances the anti-inflammatory 

properties, providing a soothing effect to the wearer. 

Nano strontium titanate reduces the production of 

inflammatory cytokines, which are responsible for 

triggering inflammation in the body. The nanoparticles 

in the fabric interact with the skin, releasing ions that 

modulate the inflammatory response, thereby reducing 

redness, irritation, and itching. This is particularly 

beneficial for individuals with sensitive skin or skin 

conditions such as eczema or dermatitis. Furthermore, 

nano strontium titanate has been found to have 

antioxidant properties, which contribute to its anti-

inflammatory effects. Oxidative stress is a common 

factor in many inflammatory conditions, and the 

presence of antioxidants helps neutralize harmful free 

radicals, reducing inflammation and promoting skin 

health. The incorporation of nano strontium titanate into 

fabric treatments harnesses these beneficial 

properties, offering a unique solution for individuals 

seeking comfortable and skin-friendly clothing options. 

 
Figure 3. Inflammatory diagram of samples. 

 
 

CONCLUSION 

 

The results gained in this paper demonstrate that 

the kind of texture affects final product properties. Also, 

using nanomaterials (strontium titanate and zinc 

titanate) besides the method of composite fabrication 

can improve the chemical and physical properties. The 

anti-inflammatory properties of produced samples 

increased due to nanoparticle interaction with the skin 

cells and releasing ions which modulate the 

inflammatory response. The strength and abrasion 

resistance of the produced samples enhanced and the 

results indicate that strontium titanate has a better 

effect in this experiment. On the other hand, the 

antibacterial properties of the samples were very good 

for both texture and materials, against both negative 

and positive bacteria, which makes this product a 

suitable option for mass production. Accordingly, the 

research not only contributes valuable data and 

insights to the fabric production sector but also propels 

forward the understanding of how different treatments 

can fundamentally alter the characteristics of both 

traditionally woven and nonwoven textiles. Moreover, 

future work can focus on characterizing the structural 

and functional properties of nanofibers containing nano 

strontium titanate and zinc titanate. Additionally, efforts 

can be made to explore new applications for these 

nanofibers, such as antimicrobial coatings or water 

purification membranes. By addressing the current 

limitations and conducting comprehensive research on 

nanofibers containing nano strontium titanate and zinc 

titanate, we can unlock their full potential and contribute 

to advancements in various technological fields. 
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NAUČNI RAD 

UTICAJ TEKSTURE I NANOMATERIJALA 
NA KARAKTERISTIKE PROIZVEDENIH 
PRIRODNIH VLAKANA 

 
Ovo istraživanje procenje uticaj vrste teksture i nanomaterijala na konačna svojstva 

tkanine. Pamučna tkanina od 100% osnove i elektrosprenovana celulozna nano tkanina, 

koje su tretirane stroncijum-i cink-titanatom, proizvodene su posebnom metodom. 

Skenirajuća elektronska mikroskopija i mapiranje elemenata dokazali su postojanje 

nanočestica i pomogli u analizi morfologije proizvedenih uzoraka. Rezultat baktericidnog 

svojstva i njegove trajnosti tokom ciklusa pranja protiv Escherichia coli i Bacillus cereus 

(dve uobičajene gram-negativne/pozitivne bakterije) je bio odličan. Čvrstoća i otpornost 

na abraziju tretiranih uzoraka je veća od neobrađenih uzoraka zbog prisustva 

nanočestica i njihovih posebnih strukturnih karakteristika i formiranja veze ovih 

nanočestica sa vlaknima. Takođe, antiinflamatorna svojstva uzoraka su poboljšana u 

poređenju sa kontrolnim uzorcima usled smanjenja proizvodnje inflamatornih citokina 

nanomaterijalima. 

Ključne reči: stroncijum titanat, cink titanat, antiinflamatorno, elektrospinovanje, 
tekstura. 
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GAS-LIQUID DISPERSION AGITATED BY 
CLOSED TURBINE-TYPE IMPELLER 

 
Article Highlights  

• A turbine-type impeller having shrouds (closed impeller, CI) is applied to gas-liquid 

agitation 

• Formation of the gas cavities and dispersion as the gas bubbles through the CI are 
characterized 

• The power consumption of CI in operation handling gas-liquid dispersion is assessed 

 
Abstract  

Gas-liquid agitation by a turbine-type impeller having shrouds structurally 

(closed disk turbine impeller, CDT) was studied by examination of the flow 

behavior of the gas-liquid mixture in the impeller region, with energy 

consideration based on the impeller power characteristics in the gassed 

liquid. The way in formation of the gas cavities and dispersion as the gas 

bubbles using the CDT differed from that using a conventional disk turbine 

impeller (open impeller, ODT). The difference in relative power 

consumption, i.e., the ratio of gassed to ungassed power consumption, 

between the CDT and ODT was related to the configurations of the gas 

cavities. 

Keywords: gas-liquid agitation; closed turbine type impeller; gas cavity; 
impeller region; power characteristics. 

 
 

A vessel agitated by a mechanically rotating 

impeller is a typical apparatus to perform chemical 

processes involving the operation of dispersions such 

as gas-liquid mixtures. The impeller improves the gas-

liquid contact, dispersing sparged gas as gas bubbles, 

thereby enhancing phenomena of reaction and mass 

transfer between the gas and liquid phase. A shearing 

deformation action is desired for the impeller to 

generate the gas bubbles in the liquid in a turbulent 

flow. Preferably, a disk turbine impeller with six flat 

blades has been employed because of its relatively 

strong action. However, flat-bladed turbine-type 

impellers have an important weakness when used for 

gas-liquid agitation [1]. Studies [2—8] have emphasized 

the variable configurations of gas cavities forming 

behind the impeller blades. That variation affects the 

 

 

Correspondence: M. Yoshida, Department of Applied Sciences, 

Muroran Institute of Technology, 27-1, Mizumotocho, Muroran 

050-8585, Japan. 
E-mail: myoshida@mmm.muroran-it.ac.jp 
Paper received: 11 April, 2024 
Paper revised: 20 June, 2024 
Paper accepted: 16 July, 2024 

https://doi.org/10.2298/CICEQ240411027Y 

capacity of the impeller to handle the gas or the power 

input by the impeller. Information about impellers 

improved in use for gas-liquid agitation is available in 

the literature [9—12]. One proposal is a disk turbine 

impeller with six hollow (concave) blades [13,14]. The 

concave bladed turbine impeller had an enhanced gas-

handling capacity. Additionally, the power fall under 

gassing was alleviated, compared with that for the flat-

bladed turbine impeller. These improved performances 

were attributed to reduced formation of the gas cavities 

[15—18]. Because the gas cavities play a role in 

generating the gas bubbles, their formation should be 

evaluated for effectiveness rather than the result of 

reduction. 

Previously, we proposed a design of an agitation 

impeller with the alteration of a conventional turbine-

type impeller [19]. A concept of the alternative design 

was for the impeller blades to transmit energy fully. This 

impeller, which has shrouds structurally, was named a 

“closed disk turbine impeller (CDT)” in contrast with a 

conventional “open disk turbine impeller (ODT)”. In a 

baffled vessel agitated by the CDT, the internal liquid 

flow in the impeller rotation region was examined to be 

analyzed for energy consideration [19]. A comparison 

of the power characteristics between the CDT and ODT 

http://www.ache.org.rs/CICEQ
mailto:myoshida@mmm.muroran-it.ac.jp
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demonstrated an increased transmission of energy and 

its possibly uniformized dissipation. The CDT has a 

higher efficiency of energy transmission. Additionally, 

the centrifugal action with the CDT is advantageous to 

produce the radial flow with a high level of turbulence. 

Accordingly, a successful performance is expected for 

the CDT agitating mixtures in dispersion systems. 

In the present work, the closed disk turbine 

impeller (CDT) was applied to gas-liquid agitation. 

Visual observation using a video camera was made for 

the region of impeller rotation with gas sparging into 

liquid. The flow behavior of the gas-liquid mixture for the 

CDT was investigated and characterized with emphasis 

on the formation of the gas cavities and dispersion as 

the gas bubbles, by contrast with that for the open disk 

turbine impeller (ODT). The power characteristics of 

CDT in the gassed liquid were evaluated in relation to 

the operation of the gas-liquid dispersion. 

EXPERIMENTAL 

An experimental setup was constituted with a 

standard agitation vessel and a gassing system. A fully 

baffled cylindrical vessel with a flat base made of 

transparent acrylic resin (300 mm inner diameter, Dt) 

was used. Four vertical baffles with a width of Dt/10 

were fitted along the internal wall of the vessel, spaced 

equally around the circumference. The ungassed liquid 

depth was maintained at Dt, i.e., 300 mm. Figure 1 

shows the closed impeller designs [19]. Its diameter, Di, 

 
Figure 1. Schematic drawing of a closed impeller (dimensions 

in mm). 

was 150 mm (=Dt/2). An open impeller of equal size in 

Di was used for comparison. The respective impellers 

were set at a height of Dt/3 from the vessel bottom. The 

impeller rotation rate, Nr, was varied from 50 to 200 

rpm. A single-hole nozzle of 5.0 mm inner diameter was 

used for air sparging. The volumetric gas flow rate, Q, 

was varied from 5 to 70 L min-1 for the superficial gas 

velocity, Vs, of 0.12—1.65 cm s-1. 

Visualization of the gas behavior as it is sparged 

into the liquid within the vessel was done based on 

views from the bottom and the front. In the bottom view, 

the conditions were observed for the impeller to capture 

the gas and generate gas bubbles. In the front view, the 

conditions of the bubble dispersion were observed in 

the bulk liquid. The gas behaviors were recorded as 

continuous images using a video camera with a 

1000 fps frame rate. For the liquid flows produced by 

the respective impellers, the results measured with 

PTV, which were presented in the earlier reports 

[19,20], were used as references. The impeller power 

consumption was determined by measuring the torque 

with strain gauges fitted onto the shaft [19,20]. 

 
 

RESULTS AND DISCUSSION 

Flow behavior of gas-liquid mixture 

Figure 2 depicts the region where the impeller 

rotates at the rate, Nr, of 140 rpm under the condition of 

gassing in the superficial gas velocity, Vs, of  

0.12 cm s-1 (the open impeller (ODT) – Fig. 2(a) and the 

closed impeller (CDT) – Fig. 2(b). The aeration number 

is defined as follows: 

a

r i

Q
N

N D 3
=     (1) 

For its value of 0.011, the agitation level is evaluated as 

relatively larger than the aeration level [21]. In the ODT 

operated under this aeration-agitation rate condition, 

the vortex cavities [22] remained stable, forming on the 

rear sides near the upper and lower edges of the 

impeller blades. The sparged gas was captured 

steadily by the cavities. The gas bubbles were 

generated continuously from the end of the cavities into 

the bulk liquid [23]. The upper and lower edges of the 

CDT blades are shrouded with doughnut-shaped disks. 

Therefore, no vortex cavity was observed in a form 

similar to that forming behind the ODT blades. With the 

use of the CDT, the sparged gas was aggregated as 

cavities on the rear sides of the impeller blades. Each 

cavity grew circumferentially long. Generation of the 

gas bubbles occurred radially around the exit of the 

impeller rotation region. 

For the ODT in such an operational condition, it 

has been known that the path-line of sparged gas is 
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Figure 2. Bottom view of impellers of (a) open and (b) closed 

type rotating with gassing under lower aeration rate condition. 

 
Figure 3. Gas behavior and liquid flow in regions of (a) open and 

(b) closed impellers. 

almost the same as that of liquid in single-phase 

flow [23]. Figure 3 illustrates a profile of the velocity in 

single-phase liquid flow [19] superimposed on the 

image of the impeller handling the gas-liquid mixture. 

The velocity profiles were determined on the different 

heights of horizontal planes. The figure (a) is for the 

open impeller (ODT). The profile at the height of 6 mm 

above the lower blade edge was picked up. The figure 

shows the vectors for the flow velocity relative to the 

impeller rotation. As expected for the ODT, the path line 

of the sparged gas coincides with that of the liquid flow. 

In the impeller inside the region, the gas behavior and 

the liquid flow were in common characterized as an 

intensified stream with radial discharge behind the 

blade. Outside the impeller, an elongated zone with a 

larger velocity gradient in the liquid flow was detected, 

possibly because of a rotation flow in the trailing vortex. 

A line to characterize such a zone overlapped the 

trajectory of the gas cavity. The figure (b) is for the 

closed impeller (CDT). The profile at the height of 2 mm 

above the lower blade edge was picked up. The CDT 

had the path-line common to the gas and liquid. For the 

internal region, the liquid flow was found to be 

distributed into the front and rear sides between the 

impeller blades. A line to characterize the distributary 

was detected. On the line, the gas cavity is formed by 

handling the gas-liquid mixture. Such a flow field 

appears to be attributable to the flow produced 

secondarily as a consequence of the shrouding disk 

fitted to the blade edges.  

To observe the efficacy of the shrouding disk, the 

profile of the circumferential flow velocity was 

investigated for the single-phase liquid between the 

blades. Figure 4 shows the circumferential velocities of 

the inflow (40.0 mm radial position) and outflow 

(72.5 mm radial position) in the developed view of the 

faces of the circular cylinders forming in the respective 

positions, where the flow velocity is relative to the 

impeller rotation. Plates (a) and (b) in the figure are 

related respectively to the open impeller (ODT) and the 

closed impeller (CDT). For the ODT, the flows toward 

the front surface of the blade were observed in most 

parts of the region. In the CDT, the flows were induced, 

as caused by the pressure gradient [24,25]. They 

trended from the front of higher pressure to the back of 

lower pressure. Such a secondary flow, which was 

detected in the layer near the inner surface of the 

shrouding disk, extended axially and covered the entire 

blade surface. The gas cavity in the gas-liquid system 

is believed to form in the orientation from higher to 

lower pressure according to the pressure gradient. 

Figure 5 depicts the gassed regions of the ODT 

(a) and the CDT (b) under the conditions of the impeller 
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Figure 4. Circumferential liquid flows between blades of (a) open 

and (b) closed impellers. The scale of the velocity vector is the 

same as that in Fig. 3. 

 
Figure 5. Bottom view of impellers of (a) open and (b) closed 

type rotating with gassing under higher aeration rate condition. 

rotation rate, Nr, of 140 rpm and the superficial gas 

velocity, Vs, of 0.47 cm s-1. Then, the aeration number, 

Na, of 0.042 indicates a relatively increased aeration 

level [21]. In the ODT, vortex-like cavities clinging to the 

blades and larger cavities blanketing the blades formed 

alternately [22]. As compared the image (a) between 

Figs 2 and 5, generation of the gas bubbles through the 

large cavities tended to deviate from the radial direction 

to the circumferential direction. Reduction in gas 

dispersion was suggested due to the formation of the 

large cavities hindering a part of the radially outward 

liquid flow [23]. Comparison of image (b) between Figs 

2 and 5 demonstrated with the CDT that the aeration-

agitation rate condition exerted a slight effect on the 

formation of the cavities and generation of the gas 

bubbles: the circumferentially long cavities generated 

effectively the gas bubbles in a radially outward 

direction. The dependence of gas dispersion on the 

operational condition was found to differ between the 

ODT and CDT. This suggests a difference in centrifugal 

effect in the gas cavities forming in the respective 

impellers. As shown in Fig. 4, the circumferential 

outflow velocity relative to the impeller rotation was 

smaller overall with the CDT than with the ODT. That is, 

the CDT produces a flow field rotating with larger 

absolute velocities, which can lead to a favorable 

centrifugal effect. 

Relation between power consumption and cavity 
formation 

The formation of gas cavities behind the impeller 

blades and dispersion as gas bubbles within the vessel 

can affect energy transmission through the 

impeller [22]. This effect has been assessed in terms of 

the ratio of gassed power consumption to ungassed 

one of the impellers, Pmg/Pm0. Changes in the power 

consumption are observed with variation of the impeller 

rotation rate, Nr, under a constant condition of the 

superficial gas velocity, Vs, or with the variation of Vs 

under a constant condition of Nr. Here, the latter 

approach was employed. The results were coordinated 

in terms of the aeration number, Na. Figure 6 shows the 

relationships between Pmg/Pm0 and Na for the ODT and 

CDT, respectively. When the ODT was operated at a 

lower rotation rate such as 50 rpm, the impeller had 

ineffectual dispersions according to the flow regime 

map [21]. Then, the Pmg/Pm0 values close to 1, which 

indicate a power characteristic unaffected by gassing, 

can reflect unsatisfactory dispersions. For the CDT 

operated at the rotation rate of 50 rpm, decreases in 

Pmg/Pm0 were observed, suggesting some level of 

successful working of the impeller. With the increase of 

the impeller rotation rate, on the whole, Pmg/Pm0 tended 

to decrease commonly for the ODT and CDT. The ODT, 

being operated at a higher rotation rate such as  
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200 rpm, had larger decreases in Pmg/Pm0 under higher 

aeration rate conditions, probably because of the 

formation of the large cavities [21]. For the CDT, 

decreases in Pmg/Pm0 were smaller than those for the 

ODT, which supports the smaller effect of the aeration-

agitation rate condition on the formation of the cavities. 

Additionally, as predicted from the images presented in 

Fig. 7, the impeller region shrouded by the hollow disk 

can function to capture the sparged gas. Increased gas 

hold-up in the impeller region is regarded as potentially 

contributing to the power reduction. 

 
Figure 6. Relationships between relative power consumption 

and aeration number for open and closed impellers. 

 
Figure 7. Front view of impellers of (a) open and (b) closed type 

rotating with gassing under lower aeration rate condition. 

Overall, the power characteristics of CDT were 

perceived as stable with variations in the operational 

conditions. This demonstrates for the CDT the higher 

efficiency of energy transmission through the impeller 

and the effective gas-liquid agitation by the impeller for 

widely various aeration-agitation rates.  

Moreover, to confirm the effective gas-liquid 

agitation by the CDT, more quantitative examinations 

are desired for mass transfer enhancement in terms of 

the volumetric coefficient, including the gas hold-up and 

gas bubble diameter. 

 

 
CONCLUSION 

 

The flow behavior of the gas-liquid mixture 

agitated by the closed disk turbine impeller (CDT) was 

examined through flow visualization and measurement, 

in comparison with that agitated by the open disk 

turbine impeller (ODT). In the CDT, the path-line for the 

motion was common to the sparged gas and single 

liquid, as is the case with that for the vortex motion 

characteristic in the ODT. The cavities forming in the 

CDT generated gas bubbles, nearly independent of the 

aeration-agitation rate condition. The ratio of gassed-

to-ungassed power consumption of the impeller was 

assessed as a reflection of the formation of the gas 

cavities and dispersion of the gas bubbles. For widely 

various aeration-agitation rates, energy transmission 

through the CDT was revealed to be better than that 

through the ODT forming the large cavities. 

 

 

NOMENCLATURE 

Di impeller diameter, mm 
Dt vessel diameter, mm 
Na aeration number 
Nr impeller rotation rate, rpm 
Pm0 ungassed impeller power consumption, W 
Pmg gassed impeller power consumption, W 
Q volumetric gas flow rate, L min-1 
Vs superficial gas velocity, cm s-1 
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NAUČNI RAD 

MEŠANJE DISPERZIJE GAS-TEČNOST 
TURBINSKOM MEŠALICOM 
ZATVORENOG TIPA 

 
Mešanje gas-tečnost turbinskom mešalicom sa strukturnim omotačem (turbinska 

mešalica sa diskom zatvorenog tipa, CDT) proučavano je ispitivanjem ponašanja smeše 

gas-tečnost u regionu mešalice, uz razmatranje energije na osnovu karakteristika snage 

mešanja u sistemu gas-tečnost. Način formiranja gasnih šupljina i dispergovnje gasnih 

mehura pomoću CDT-a razlikuje se od onog pomoću konvencionalne turbinske mešalice 

sa diskom (otvoreno radno kolo, ODT). Razlika u relativnoj potrošnji energije, tj. u odnosu 

snage mešanja disperzije gas-tečnost i čiste tečnosti, između CDT i ODT, povezana je 

sa konfiguracijom gasnih šupljina. 

Ključne reči: mešanje sistema gas-tečnost; turbinska mešalica sa diskom 
zatvorenog tipa; gasna šupljina; oblast mešalice; snaga mešanja. 
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APPLICATION OF WASTE RAW 
MATERIALS AS A REINFORCEMENT FOR 
PROTECTIVE COATINGS BASED ON 
PYROPHYLLITE 

 
Article Highlights  

• Pyrophyllite was used as an 80% filler in protective coatings, with 15% silicone resin 

acting as a binder 

• 20% of secondary raw material additions based on mullite and corundum increased the 
protective coating's durability 

• PM20 and PC20 coatings had cavitation rates of 0.22 mg/min and 0.14 mg/min, 

respectively, indicating cavitation erosion resistance 

 
Abstract  

In this study, pyrophyllite was used for the first time in the composition of 

protective refractory coatings together with supplementary waste resources. 

The proposed refractory coatings are applicable for metallic and non-

metallic structures, with the option of using them to protect machinery 

components in the chemical industry, metallurgy, and mining. Given that 

pyrophyllite has a low hardness, the goal was to improve the coating's 

resistance to cavitation erosion by adding 20 wt.% of hard refractory 

materials, i.e., crushed and micronized waste bricks based on mullite and 

corundum, respectively. Previous studies have demonstrated that protective 

coatings using a pyrophyllite filler have refractory qualities but insufficient 

resistance to cavitation erosion. As a result, the composition of refractory 

coatings, the preparation techniques, and the coating manufacturing 

process were altered. This study presents a simple method for combining 

conventional coatings made of refractory fillers (primary resource: 

pyrophyllite) with waste materials (mullite brick and corundum brick) used 

as reinforcement in protective refractory coatings for metal and non-metal 

structural elements that are highly resistant to cavitation erosion. 

Keywords: construction materials; waste resources; metal substrate; 
microstructure; cavitation erosion. 

 
 

Chemical, mechanical, and construction industry 

professionals are looking for innovative building 

materials that have the potential to reduce energy 

consumption, increase thermal insulation, and 

minimize CO2 emissions. The world is today facing 

major energy issues and concerns as a result of rising 
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living standards and rapid population expansion. 

Industry (chemical, machine, building, etc.) is one of the 

primary sectors recognized for having a large impact on 

atmospheric carbon dioxide emissions, which 

contribute to global warming [1,2]. The primary goal is 

to identify new solutions to reduce CO2 emissions in the 

industry sector through innovative use of alternative 

raw materials [3—5]. The industry aims to use raw 

materials from waste streams, which are resources that 

correspond to the Green Agenda principles [6,7]. In this 

experiment, discarded mullite and corundum bricks 

were used as an alternative raw material for 

reinforcement in refractory coatings. 

Pyrophyllite was used in this work as the base 

material for producing the refractory coatings. The main  

http://www.ache.org.rs/CICEQ
mailto:drmana@tmf.bg.ac.rs
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characteristic of this mineral is that it is composed of 

two tetrahedral Si sheets placed between an Al 

octahedral sheet to form a layered hydroxy-

aluminosilicate [8]. In octahedral form, every Al atom of 

pyrophyllite has four O atoms connected to Si 

tetrahedra. Two structural OH groups are also bound to 

Al atoms [9]. Pyrophyllite is characterized by its unique 

crystalline structure and softness of talc [10]. Due to the 

specific structure and the O atoms' placement between 

the layer surfaces, pyrophyllite is extremely resistant to 

acids, which is important when this mineral is employed 

in the design of coatings [11,12]. The typical impurities 

found in pyrophyllite usually include mica, bauxite, 

diaspore, and quartz. When heated, pyrophyllite loses 

the structural OH groups linked to its octahedral sheet 

(550 °C) and creates mullite and cristobalite (1200 °C), 

which are refractory mineral phases [13—15].  

Pyrophyllite's main uses are in the refractory and 

ceramic industries, which are established by its 

excellent heat resistance, stable crystal structure 

during heating, and consistent chemical 

composition [16].  

The resistance of substrate to different types of 

erosion (such as carbonation, chloride ion erosion, and 

cavitation erosion via water) can be greatly increased 

by the application of the organic-based coatings to 

metal or non-metal (e.g., concrete) surfaces [17—20]. 

Several studies have demonstrated that the most 

crucial elements for establishing a protective layer on 

the surface of a material are the organic film-forming 

coatings of high density and stable chemical 

composition [21,22]. This layer keeps metal or non-

metal components inside a structure safe from 

corrosive environmental media (heat, moisture, and 

acids) [23]. Protective coatings have become more and 

more important as an auxiliary technology to ensure the 

long-term service performance of metal, concrete, 

and/or composite structures in residential and 

commercial settings [24,25].  

The basic idea is to produce a relatively non-toxic, 

extremely erosion-resistant, and easily clean protective 

coating using water as the dispersing medium, a low 

organic content, and an inorganic raw material (filler) 

with a high hardness value and good grain size and 

shape distribution. 

This study presents an easy approach to 

transform traditional coatings formed of refractory filler 

(primary resource: pyrophyllite) with waste materials 

(pulverized mullite brick and corundum brick) used as 

reinforcement in protective refractory coatings for metal 

and concrete structural elements that are resistant to 

cavitation erosion. 

 

EXPERIMENTAL 

Materials and mix-design of the coatings 

Pyrophyllite (mineral formula: Al2Si4O10·(OH)4) 

was used as a base material in the mix design of 

experimental coatings. Since the pyrophyllite mineral 

belongs to the talc group, the performance and 

characteristics of pyrophyllite are similar to those of 

talc. Namely, pyrophyllite has a hardness of 1—2 on the 

Moh's scale of hardness, which is very low. Therefore, 

the addition of certain ‘reinforcing’ raw materials is 

necessary to improve the coatings’ hardness and 

mechanical characteristics. 

Pyrophyllite ore was extracted from the Parsovići 

deposit, located in Bosnia and Herzegovina. The usual 

ore sampling campaign was carried out to prepare a 

representative 300 kilogram sample [26]. The original 

pyrophyllite ore was quartered and roughly crushed 

using cone and jaw crushers to break the ore crude 

mass up into 10 kg sub-samples. After rough crushing, 

the subsamples (10 kg) were further milled and finally 

pulverized in an ultra-centrifugal mill. Pyrophyllite sub-

samples were subjected to wet sieving on a series of 

W.S. Tyler test sieves to analyze the particle sizes 

(Figure 1). The average grain size of the pyrophyllite 

grain mixture was d50=20µm. The mean grain shape 

factor was 0.67 (semi-round) [27,28]. The pyrophyllite 

mineral was found to be the dominant phase, 

accounting for up to 50% of all current crystalline 

phases, according to an X-ray diffraction examination 

of the pyrophyllite sample (Figure 2). In the analyzed 

sample, the amounts of quartz, calcite, and dolomite 

were less abundant, accounting for up to 30%, 10%, 

and 5%, respectively. Kaolinite was detected in very 

small amounts [29]. 

 
Figure 1. Grain size distribution of mineral raw materials used 

for filler preparation. 

Mullite-based material (mullite mineral formula: 

3Al2O3·2SiO2) was used as a reinforcement in the mix 

design of the coating. To achieve low-cost coatings, 

mullite was not synthesized; instead, recycled mullite 

refractory bricks were employed (acquired from a local 

refractory construction firm). According to the 
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Figure 2. X-ray diffractogram of pyrophyllite sample. 

Rongsheng Kiln Refractory Bricks Manufacturer, mullite 

is used as the primary raw material for the production of 

mullite bricks, which are then manufactured via molding 

and high-temperature sintering. The refractoriness of this 

material is as high as 1600 °C. Bulk density is 1.5 g/cm3. 

The cold-crushing strength is 9 MPa. The apparent initial 

softening temperature is 1600 °C (conditions: 0.1 MPa, 

0.6%). The thermal conductivity is 0.6 W/(m∙K). The 

maximum service temperature is 1550 °C. The samples 

were crushed and milled to the average d50=15µm. The 

mean grain shape factor was 0.57 (semi-angular). 

Similarly, corundum bricks (corundum mineral 

formula: Al2O3) from the same manufacturer and local 

distributor were used as refractory reinforcement in the 

coatings mix design. The refractoriness of this material 

is approximately 1800 °C. Bulk density is 2.5 g/cm3. The 

cold-crushing strength is 25 MPa. The apparent initial 

softening temperature is 1700 °C (conditions: 0.1 MPa, 

0.6%). The thermal conductivity is 0.5 W/(m∙K). The 

maximum service temperature is 1700—1750 °C. The 

samples were also crushed and milled to the average 

d50=15µm. The mean grain shape factor was 0.53 

(semi-angular). 

Cordierite and mullite were also submitted to the 

sieve analysis to detect the grain-size distribution of 

these two employed raw materials (Figure 1). Based on 

data on grain shape [28,30,31], i.e., pyrophyllite being 

semi-round while mullite and corundum being semi-

angular, this mix composition is suitable for achieving a 

good alignment of the grains with each other during 

coating application, which will contribute to its hardness 

and adhesion and ultimately better surface protection. 

The chemical composition of the raw materials 

was determined using atomic absorption spectrometry 

on a Perkin Elmer Analyst 300 instrument. 

Characteristics of the device: wavelength range:  

185—900 nm; optical dual beam; monochromator with 

1800 lines/mm; photo multiplicator detector; carrier with 

6 lamps with automatic positioning; flame technique; 

titanium burners of 10 cm and 5 cm; automatic gas flow 

adjustment. The chemical composition is provided in 

Table 1. 

Table 1. Quantification of the major oxides in mineral raw 

materials used for filler preparation. 

Oxide, % SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 SO3 LoI* 

Pyrophyllite 68.30 16.20 1.49 6.27 1.14 0.61 0.38 0.15 0.01 5.45 
Mullite 13.81 83.14 0.32 - - - - - - 2.73 
Corundum 2.59 95.80 0.10 - - - - - - 1.51 

* Loss on ignition at 1000 °C. 

Two coatings were prepared for the experiment. 

The samples were labeled as PM20 and PC20. Both 

coatings contained pyrophyllite at 80 wt.% in the mix 

design of filler for coating. The recycled mullite brick 

was added to PM20 in 20 wt.% (of the total filler mixture 

mass). Similarly, the recycled corundum brick was 

added (20 wt.%) to PC20. Dry powders were 

additionally homogenized in a laboratory mixer (at 

ambient temperature: 20 °C) before adding liquid 

compounds. Siloxane resin with epoxy modification, in 

liquid form (purchased from manufacturer Evonik 

Operations GmbH), was added in 15 wt.%. According 

to the data sheet, SILIKOPON® EF treats successfully 

at ambient temperature in combination with 

aminosilanes. Dynasylan® AMEO is an aminosilane-

based coupling agent (3.5 wt.%). The ratio between 

epoxy resin and coupling agent was 4.5:1. Titanium 

dioxide (TiO2) (Fisher Chemicals, UK) was used as an 

additive in the amount of 1.5 wt.% in accordance with 

the recommendations by the SILIKOPON 

manufacturer. The mix-design of the experimentally 

prepared coatings is provided in Table 2.  

Table 2. Mix-design of the coatings. 

Sample Mullite (%) Corundum (%) Pyrophyllite (%) Siloxane resin (%) Coupling agent (%) Titanium dioxide (%) 

PM20 20 - 80 15* 3.5* 1.5* 
PC20 - 20 80 15* 3.5* 1.5* 

* Of the total mass. 

 

The powder was initially dissolved in alcohol 

(ethanol). Then the mixture was added to the siloxane-

epoxy resin and mixed for 5 minutes. After adding the 

coupling agent and additive, the mixture was stirred for 

an additional 15 minutes. The coatings were spread on 

the specimens (round steel tin plates of 2 cm diameter) 

via a film applicator. After the coating process, the 

specimens were kept at room temperature (20 °C) for 

24 hours. 
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Instrumental methods 

The experimentally produced PM20 and PC20 

refractory coatings were subjected to the standard test 

procedure for cavitation erosion as per ASTM G32-16 

[30,31]. The PM20 and PC20 samples (steel tin coated 

with experimentally developed coatings) were used in 

the experiment. The starting masses of the PM20 and 

PC20 samples were 25 g and 27 g, respectively. The 

ultrasonic vibratory cavitation method was employed 

with a stationary sample due to the brittle nature of the 

examined material. The sample holder was secured to 

the bottom of the water bath. The mechanical vibratory 

concentrator was immersed in a water bath. The water 

temperature remained constant at 25±1°C. The sample 

and the front surface of the vibratory concentrator were 

separated by a 0.5 mm gap. Mechanical vibrations at a 

frequency of 20 ± 0.2 kHz were employed. Mechanical 

vibrations at the concentrator top had an amplitude of 

50 ± 2 μm. The distance between the test sample and 

the concentrator was 0.5 mm. A significant cavitation 

zone developed beneath the concentrator's front 

surface and the stationary-tested sample. The water 

bath was cooling the sample to keep it at a constant 

temperature. A constant water flow formed a pressure 

field, causing cavitation bubbles to implode on the 

surface of a sample. The water flow rate was 5-10 ml/s, 

and the bathroom temperature was 25±1°C. The 

cavitation intervals used were 0, 15, 30, 45, and 60 

minutes. During testing, the materials were dried, and 

mass loss was recorded with an analytic accuracy of 

±0.1 mg. The test results indicate the average of at 

least three tests per sample. 

Microstructural investigation of PM20 and PC20 

samples was performed using a scanning electron 

microscope (SEM) (JEOL JSM-6610LV). For the 

recording, the carbon coating was applied using the 

table-top sputter coater LEICA SCD005. The 

magnification of the equipment ranges from 5 to 

300,000 times. The electron source is a W wire (LaB 6). 

The voltage ranges from 0.3 to 30 kV. The instrument 

operates on a vacuum system. 

An open-source software, JMicroVision v1.3.1.38 

[32], was used as an image analysis tool. This software 

can measure, identify, characterize, and quantify 

various picture components. It supports extremely large 

photos and boasts a robust feature set with an easy-to-

use interface. Similar to a microscope, it enables 

dynamic specimen observation with the option to 

combine several lighting or focus modes (fluorescent, 

polarized light, etc.). Additionally, images can be 

viewed simultaneously using the magnifying lens and 

multi-view tool. Each image has its zoom coefficient 

and is maintained in the same center location. Main 

Features: read images in TIFF, BMP, GIF, JPEG, PNG, 

and PNM formats; Quantification of components—

objects or background; object analysis (size, shape, 

orientation, texture); image processing (binary and 

morphology operations, filtering, segmentation); image 

rectification (geometric corrections by control points); 

digital point counting; tools for data collection in one or 

two dimensions; image annotation (variation of 

granulometry, density, objects, or background). 

 

 
RESULTS AND DISCUSSION 

The mass loss diagram (Fig. 3a) depicts the 

damage outcomes by plotting the mass loss values on 

the ordinate and the time of material exposure to the 

cavitation erosion on the abscissa. Mass loss was 

measured after each cavitation erosion sequence (i.e., 

0, 15, 30, 45, and 60 min). Similarly, the surface 

degradation level of samples (Fig. 3b) is a correlation 

between the measured damaged surface and the 

surface without damage. The development of 

superficial pits (Fig. 3c) is presented as an interrelation 

between the estimated number of pits per sample and 

exposure time (from 15 to 60 min). The mean area of 

formed pits (Fig. 3b) was estimated from the number of 

pits using image analysis [32], and the number was 

correlated to the cavitation exposure duration. 

 
Figure 3. Test results of the refractory coatings PM20 and PC20 

during cavitation erosion: (a) Mass loss; (b) Level of surface 

area degradation of samples; (c) Number of formed pits; (d) 

Mean area of formed pits. 

After 15 minutes of erosion, the sample PM20 lost 

2 mg, while the sample PMC20 lost 1.9 mg of its starting 

mass. The values for both coating samples are 

comparable. During the following iteration of the 

cavitation procedure, the measured mass losses were 

5.5 mg for the PM20 coating and 3.9 mg for the PC20 

coating. After 45 minutes, the following values were 

obtained: 9.9 mg and 4.5 mg for PM20 and PC20, 

respectively. The final values of mass loss (60 minutes 

of water exposure) were 13 mg and 6.9 mg for mullite 

and corundum-based coatings, respectively. It can be 
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concluded that the mullite-based coating (PM20) was 

losing mass due to cavitation erosion more rapidly than 

the PM20 coating. 

The level of surface area degradation was 

estimated for the PM20 and PC20 samples, whose 

initial surface area was 1257 mm2. Estimated degraded 

areas on each sample (PM20 and PC20, respectively) 

after the cavitation erosion cycle were: 7.2% and 2.9% 

after 15 minutes of exposure; 12.8% and 4.3% after 

30 minutes of exposure; 14.7% and 8.1% after 45 

minutes of exposure; and 17.7% and 8.5% after 60 

minutes of exposure. Even though the percentage of 

degraded areas is small, it can be noted that the 

degraded surface progression is more rapid for the 

mullite-based sample. 

The estimated number of pits followed the trend 

of increasing which is characteristic of the PM20 

sample: 98 (after 15 minutes of exposure), 109 (after 30 

minutes of exposure), 173 (after 45 minutes of 

exposure), and 197 (after 60 minutes of exposure). The 

number of pits was comparatively lower for the PC20 

sample for each cavitation exposure sequence: 67 

(after 15 minutes), 96 (after 30 minutes), 146 (after 45 

minutes), and 129 (after 60 minutes). During the last 

sequence for the PC20 sample, the number of pits 

started decreasing. By comparing diagrams Fig. 3b and 

Fig. 3c, it can be assumed that in the case of PC20 

coating, the new pits ceased opening after 45 minutes, 

while the existing pits started widening or merging. 

Upon estimating the degraded area, but taking 

into account only the area under pits, the following 

results are acquired: 2 mm2 after 15 minutes of 

exposure, 2.25 mm2 after 30 minutes of exposure, 

2.4 mm2 after 45 minutes of exposure, and 2.65 mm2 

after 60 minutes of exposure for the PM20 sample; and 

0.9 mm2 after 15 minutes of exposure, 1.1 mm2 after 30 

minutes of exposure, 1.3 mm2 after 45 minutes of 

exposure, and 1.4 mm2 after 60 minutes of exposure for 

the PC20 sample. The area under the pits was smaller 

for the corundum-based coating.  

The corundum-based coating is more resistant to 

cavitation erosion than the mullite-based coating, 

probably due to the difference in the filler's Mohs 

hardness. Namely, pure mullite mineral is 6—7 on the 

Mohs hardness scale, while corundum is 9. 

The rate of cavitation is calculated from the 

measured mass loss for each testing period. The points 

of the diagram are approximated by a straight line using 

the least squares method. The tangent of the slope 

depicts the loss of mass during the period of cavitation 

activity and represents the rate of cavitation erosion. 

For each set of tested samples, three samples were 

used, and the findings represent the mean value of 

these measurements for each test interval. The 

cavitation rate given in Fig. 4 is a quantifiable 

measurement of the intensity of material degradation 

caused by cavitation. 

Based on the determined cavitation velocity 

values, the resistance to the cavitation effect of the 

investigated samples can also be assessed. Namely, 

the cavitation rate for the PM20 sample is  

v = 0.22 mg/min, while the obtained value for the PC20 

sample is lower: v = 0.14 mg/min. This means that 

corundum-based coating is less rapidly deteriorating 

than mullite-based coating. 

 
Figure 4. Cavitation erosion rate estimated for refractory 

coatings PM20 and PC20. 

 
Figure 5. PM20 and PC20 coating samples exposed to a 

cavitation test with accompanying profile lines. 

Figure 5 shows the surfaces of the coating 

samples during the cavitation erosion test (0–60 

minutes) with the corresponding profile lines obtained 

by image analysis. 

The profile lines of the PM20 and PC20 refractory 

coatings are uniform up to 45 minutes of exposure. 

Individual peaks, which are present on the profile-line 

diagram, refer to the presence of singular pits on the  
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surface of each sample. A certain number of pits were 

identified on the original PM20 and PC20 samples 

(before cavitation erosion testing). In the case of the 

PM20 sample, larger peaks are observed on the profile 

line for 60 minutes of cavitation in comparison with the 

corresponding profile line for the PC20 sample. The 

formation and development of the damage to the 

surface of the exposed samples took place at a low 

speed. The results presented in Fig.4 are in agreement 

with the results provided in Fig.3 a—d. 

Figs. 6 and 7 show SEM microphotographs of the 

characteristic eroded surfaces of the coatings PM20 

and PC20 created during testing the effect of cavitation. 

 
Figure 6. SEM microphotographs of the PM20 coatings: (a), (c), 

and (e) before cavitation; and (b),(d), and (f) after 60 min of 

cavitation. 

The initial untreated coatings PM20 (Fig. 6) and 

PC20 (Fig. 7), as seen in the SEM microphotographs 

on the left side (a, c, and e), show filler particles of 

various sizes and shapes dispersed uniformly inside 

the epoxy matrix. The coating applied to the metal 

substrate is clearly free of defects, bubbles, and 

delamination. The samples PM20 (Fig. 6) and PC20 

(Fig. 7) recorded following the final 60-minute cavitation 

erosion phase are shown on the right (b, d, and f). The 

given microphotographs demonstrate that the pits are 

primarily superficial. There are no void clusters of 

deeper channels starting from the superficial cavitation 

pits. The pits appear to be shallow and have smooth 

surfaces. Thereby, the metal substrate could not be 

damaged by water stream action due to the presence 

of the protective coating. 

During this research, several potential limitations 

occurred. Primarily, there was insufficient sample size 

for statistical measurements. To make meaningful 

findings from a study, it is critical to have a large enough 

sample size. The results are more accurate with a 

larger sample size. Finding important relationships in 

the data was challenging because the sample size was 

too small. To guarantee that the sample is regarded as 

representative of the community and that the statistical 

result may be extrapolated to a broader population, 

statistical tests typically call for a larger sample size. 

The plan for future research is to repeat the experiment 

with a larger sample, expand the number of designed 

coatings, and finally employ a method for analytical 

modeling (e.g., artificial neural networks) to predict and 

optimize the behavior and performance of the 

protective coatings. 

 
Figure 7. SEM microphotographs of the PC20 coatings: (a), (c), 

and (e) before cavitation; and (b), (d), and (f) after 60 min of 

cavitation. 

 

 
CONCLUSION 

 

In this study, refractory coatings for metal 

substrates were successfully made and evaluated for 

cavitation erosion resistance using an inorganic filler of 

80 wt.% (pyrophyllite and mullite, i.e., pyrophyllite and 

corundum) and a siloxane resin of 15% in their mix-

design. The key findings are summarized as follows:  

The average grain in the filler mixture is sub-

rounded to sub-angular, which is suitable for creating 

homogeneous coatings. The addition of recycled 

corundum and/or mullite increased the hardness of the 
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inorganic filler and, thereby, the coating. When applied 

to a solid surface, the particles of varied grain sizes 

contribute to the formation of a homogeneous and 

durable coating layer. The coatings adhered properly to 

the metal plate, completely covering the surface and 

leaving no bumps or bubbles. The coating dried quickly 

in the air and exhibited no delamination or defects. 

The monitoring of mass loss during cavitation 

erosion tests allowed for the assessment of the 

cavitation rate. The cavitation rates of 0.22 mg/min and 

0.14 mg/min for PM20 and PC20 coatings, 

respectively, suggest that both coatings deteriorated 

relatively slowly. The corundum-based coating is more 

resistant to cavitation erosion than the mullite-based 

coating, probably due to the difference in the filler's 

Mohs hardness. 

The morphology of the PM20 and PC20 coatings 

during the final 60-minute cavitation erosion phase 

exhibited mostly superficial pits. There are no vacant 

clusters of deeper channels starting from the surface 

cavitation pits. The coating layer protected the metal 

substrate from damage caused by an intense water 

stream. 

This study demonstrates that the investigated 

coatings based on pyrophyllite and waste raw materials 

can be implemented in conditions that involve 

substantial cavitation loads while still providing 

adequate protection for the substrate. 
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NAUČNI RAD 

UTICAJ TEKSTURE I NANOMATERIJALA 
NA KARAKTERISTIKE PROIZVEDENIH 
PRIRODNIH VLAKANA 

 
U ovoj studiji pirofilit je prvi put korišćen u sastavu zaštitnih premaza zajedno sa dodatnim 

otpadnim resursima. Predloženi vatrostalni premazi su primenljivi za metalne i nemetalne 

konstrukcije, sa mogućnošću upotrebe za zaštitu komponenti mašina u hemijskoj 

industriji, metalurgiji i rudarstvu. S obzirom na to da pirofilit ima malu tvrdoću, cilj je bio 

da se poboljša otpornost premaza na kavitacionu eroziju dodavanjem 20 tež. % tvrdih 

vatrostalnih materijala, odnosno drobljene i mikronizovane opeke na bazi mulita i 

korunda. Predhodne studije su pokazale da zaštitni premazi sa pirofilitnim puniocem 

imaju zadovoljavajuću vatrostalnost, ali nedovoljnu otpornost na kavitacionu eroziju. Kao 

rezultat toga, sastav vatrostalnih premaza, tehnike pripreme i proces proizvodnje 

premaza su izmenjeni. Ova studija predstavlja jednostavnu  metodu kombinovanja 

konvencionalnih premaza od vatrostalnih punioca (primarni resurs: pirofilit) sa otpadnim 

sirovinama (opeke na bazi mulita i korunda) koji se koriste kao ojačivači u zaštitnim 

vatrostalnim premazima za metalne i nemetane elemente konstrukcija koji su visoko 

otporni na kavitacionu eroziju. 

Ključne reči: građevinski maaterijali; otpadni resursi; metalna podloga; 
mikrostruktura; kvaitaciona erozija. 
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OPTIMIZATION OF ULTRASOUND-
ASSISTED EXTRACTION OF 
(POLY)PHENOLIC COMPOUNDS FROM 
BLUEBERRY (Vaccinium myrtillus) 
LEAVES 

 
Article Highlights  

• The degree of correlation (R2) for all Responses is extremely high 

• High temperatures are most effective in extracting anthocyanins 

• The extraction of flavonoids is better at medium solid-to-solvent ratios 

• The extraction is most effective with a medium amount of ethanol in the solvent 

 
Abstract  

The present paper aims to discover the optimal conditions for ultrasound-

assisted extraction (UAE) of (poly)phenolic chemicals from blueberry 

(Vaccinium myrtillus) leaves. UAE was performed under the following 

process conditions: temperature: 25—65 °C, ethanol concentration in the 

extraction solvent: 30—90 vol.%, and solid-to-solvent ratio: 1:15–1:45 w/v. 

Statistical analysis was performed using Design-Expert software, using the 

Box-Behnken design. The study's responses were the content of total 

(poly)phenols, flavonoids, and anthocyanins in the derived extracts. The 

results indicated that the corresponding response surface models were 

highly statistically significant (p < 0.0001) and sufficient to describe and 

predict the content of total (poly)phenols, the content of flavonoids, and the 

content of anthocyanins with R2 of 0.965, 0.980 and 0.972, respectively. The 

optimal conditions for the extraction are for total (poly)phenols 48.4 °C, 

51.3 vol.% ethanol, and 1:43.8 w/v solid-to-solvent ratio; flavonoids 58.5 °C, 

48.0 vol.% ethanol, and 1:29.8 w/v ratio; and anthocyanins 64.2 °C, 

73.5 vol.% ethanol, and 1:44.7 w/v ratio. The use of UAE enhances 

extraction yields by increasing the release of bioactive compounds, while 

the application of the Box-Behnken design allows for precise determination 

of optimal extraction parameters, thereby achieving maximum yields and 

efficiency. 

Keywords: anthocyanins; blueberry; extraction; flavonoids; optimization; 
(poly)phenols. 

 
 

Blueberries (Vaccinium spp.) are well-known for 

their excellent taste and nutritious value around the 

world [1]. Furthermore, research has shown that  
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blueberry fruits have a variety of bioactive qualities, 

including antioxidant activity [2], anticancer [3], anti-

inflammatory [4], and cardioprotective properties [5]. 

Anthocyanins, phenolics, and other antioxidants are 

found in various blueberry species, including 

Vaccinium angustifolium, Vaccinium ashei Reade, 

Vaccinium corymbosum L., and Vaccinium myrtillus 

L. [6]. The presence of bioactive substances such as 

anthocyanins, flavonoids, and phenolic acids may be 

connected to the above-described pharmacological 

characteristics [7,8]. Anthocyanins, one type of 

flavonoid, are antioxidants that are crucial in lowering 

the risk of certain degenerative illnesses in humans  

http://www.ache.org.rs/CICEQ
mailto:nebojsa.vasiljevic@tfzv.ues.rs.ba
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[9,10]. Additionally, they can prevent cardiovascular 

disease and improve vision due to their antioxidant and 

anti-inflammatory properties [11]. The delicious fruit 

and abundance of anthocyanins have led to a continual 

increase in blueberry cultivation worldwide. However, 

in many countries, the leaves are discarded after 

pruning and represent agrifood waste. Nonetheless, 

blueberry leaves can be used for preventive effects 

against anemia, premature aging, and cataracts [8]. 

Other studies have suggested that blueberry leaf 

extracts exhibit remarkable biological activities, 

including hypolipidemic activity [12], anti-leukemic 

activity [13], suppression of hepatitis C virus [14], 

antioxidant activity [15], and antimicrobial activity [16]. 

Some research on the chemical composition of 

blueberry leaves (V. angustifolium) has indicated 

richness in chlorogenic acids and quercetin 

glycosides [17]. In leaves of rabbiteye blueberry 

(V. ashei), flavan-3-ols and proanthocyanidins have 

been identified as major phenolic components 

alongside chlorogenic acids and flavonol 

glycosides [18]. Therefore, the application of phenolic 

compounds from discarded blueberry leaves is 

environmentally friendly and contributes to the 

utilization of beneficial health-promoting compounds. 

Utilizing blueberry leaves not only reduces waste but 

also supports the circular economy by valorizing 

agrifood wastes. With increasing interest in maximizing 

blueberry plant utilization, more scientists are exploring 

the extraction potential of (poly)phenolic compounds 

from blueberry leaves. 

Supercritical fluid extraction, ultrasonic-assisted 

extraction (UAE), enzyme-assisted extraction, and 

solvent extraction are the main techniques that can be 

used to extract (poly)phenols from plants [6]. Among 

these, UAE is an effective, economical, and 

environmentally friendly approach. The mechanism of 

UAE is as follows. Phases of compression and 

rarefaction follow one another when the solvent 

molecules move longitudinally across an elastic media 

caused by the ultrasonic wave. The solvent molecules 

will collide with the surrounding molecules during the 

compression phase. Negative pressure is applied 

during the rarefaction phase, which causes the 

molecules to separate and causes cavitation bubbles to 

form in the liquid. The dissolved gas will enter the 

bubble and cause the cavitation bubbles to expand. 

Hotspots would form when the bubbles collapse, and in 

an ultrasonic bath at normal temperature, the 

temperature and pressure might reach up to 5000 K 

and 5.06x105 kPa respectively. The plant matrix's cell 

walls would be destroyed by the hotspots, releasing 

chemical compounds into the solvent [19]. For 

numerous reasons, such as simplicity, low acquisition 

cost, no specific maintenance requirements, and 

availability in most laboratories, UAE has been widely 

applied in the extraction of bioactive compounds, not 

only from blueberry fruits [20], but also from blueberry 

byproducts as pomace [21,22], or leaves [12,23]. 

Response surface methodology (RSM) has been 

successfully used recently to examine process 

optimization [24,25]. Finding the optimal conditions for 

the process is the primary goal of the RSM. Using 

statistical design techniques can reduce variation, the 

amount of time needed for adjustment, and total cost by 

increasing efficiency and bringing output outcomes 

closer to nominal values (goals) [26]. The Box-Behnken 

design (BBD) is a type of rotatory design that focuses 

on the midpoints of the edges and center points within 

a cubic region. This strategy helps to avoid extreme 

experimental conditions and reduces the likelihood of 

obtaining inaccurate results [27]. BBD is often used for 

the UAE process due to its efficiency, especially when 

dealing with three or more variables. It allows for the 

evaluation of the independent effects or interactions of 

these variables on the response variable [28]. 

This study will investigate the influence of various 

process parameters (temperature, ethanol 

concentration in the extraction solvent, and the solid-to-

solvent ratio) on the ultrasound-assisted extraction 

(UAE) of (poly)phenols from blueberry leaves 

(V. myrtillus). Using the BBD with the MINITAB 21 

software, the paper aims to determine the efficiency of 

the extraction process based on these parameters. 

 
 
EXPERIMENTAL 

Plant materials and reagents 

Dried blueberry leaves, obtained from a local 

market, were used for extraction (Figure 1). They are 

known for their darker green to brownish color, with a 

more brittle texture. Ethanol was used for sample 

extraction, while extract characterization was 

performed using the following reagents: Folin-Ciocalteu 

reagent (Carlo Erba, Germany), sodium carbonate 

(Lach:ner, Czech Republic), gallic acid (Sigma Aldrich, 

USA), aluminum chloride (Lach:ner, Czech Republic), 

sodium hydroxide (Lach:ner, Czech Republic), sodium 

nitrite (Zorka Šabac, Serbia), catechin hydrate (Sigma 

Aldrich, USA), acetate buffer pH=4.5 (Lach:ner, Czech 

Republic) and potassium chloride buffer pH=1.0 

(Lach:ner, Czech Republic). 

Methods 

Determination of total (poly) phenol content is 

based on oxidation-reduction reactions involving 

hydroxyl groups of phenol and the Folin-Ciocalteu 

reagent, as well as polymer complex ions of 

molybdenum and tungsten. The reaction requires 
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Figure 1. Dried leaves used of V. myrtillus. 

a basic environment, which is created by adding 

sodium carbonate to the reaction mixture. In a test tube, 

1.5 ml of working Folin-Ciocalteu solution, 0.2 ml of the 

sample being tested, and 1.5 ml of sodium carbonate 

were added. The mixture was left to stand for 30 

minutes in the dark at room temperature, and then the 

absorbance was measured in a 10 mm cuvette at 765 

nm, with gallic acid utilized as the standard [29]. A 

Shimadzu 1800 spectrophotometer (Cole-Parmer, 

USA) was utilized for spectrophotometric 

determination, with the calibration curve ranging from 

50 to 500 mg/l of gallic acid. The results are given in 

milligrams of gallic acid equivalent per gram of plant 

material (mg GAE/g). 

The flavonoid content of the sample is determined 

using the colorimetric technique with aluminum 

chloride. In an acidic solution, aluminum chloride forms 

stable complexes with the C-4 keto group or the C-3 

and C-5 hydroxyl groups of the present flavones and 

flavonols, and unstable complexes with ortho-

dihydroxyl groups in the A or B ring of flavonoids. In a 

test tube, 1 ml of the sample being tested and 0.5 ml of 

5% sodium nitrite solution were added and left to stand 

for 5 minutes. Then, 0.5 ml of 10% aluminum chloride 

was added, and after 6 minutes, 2 ml of 1M NaOH 

solution was added. The absorbance was measured at 

450 nm. The results were expressed as mg of catechin 

equivalent per milliliter of extract solution. This modified 

method is described in [30]. For the determination of 

flavonoids, the calibration curve was in the range of 20 

to 200 mg/l of catechin hydrate. The results are given 

in milligrams of catechin hydrate equivalents per gram 

of plant material (mg CTH/g). 

The quantitative determination of total 

anthocyanins (non-degraded monomers and products 

of their degradation) is based on the property of 

anthocyanins to reversibly change their structure when 

the pH of the environment changes, which also 

changes the absorption spectrum. The content of total 

anthocyanins is determined by the 'pH differential' 

method, as described in reference [31]. The procedure 

for determining anthocyanins is as follows: two test 

tubes are prepared for each sample. In each test tube, 

0.5 ml of the prepared sample is pipetted. Then, 3.5 ml 

of pH 1.0 buffer is added to one test tube, and 3.5 ml of 

pH 4.5 buffer is added to the other. After 20 minutes, 

the absorbance of the reaction solutions is measured at 

520 nm and 700 nm. The total anthocyanins 

concentration in the sample is determined as cyanidin-

3-glucoside equivalent (mg Cy3G/g) using the 

formula [32]: 

totC A M F l R3( 10 ) / =         (1) 

where are: Ctot - total anthocyanins content; A - (A520nm 

– A700nm)pH=1.0 - (A520nm – A700nm)pH=4.5; M - molar mass (for 

Cy3G it is 449,2 g/mol); F - dilution factor; 103- factor for 

converting grams to milligrams; ε - molar absorption 

extinction coefficient (for Cy3G it is 26900 Lmol-1 cm-1); 

l - cuvette thickness (1 cm), and R – factor for 

recalculating the value of anthocyanins per gram of 

drug. 

A Shimadzu 1800 spectrophotometer was used to 

determine anthocyanins, the same as it was for total 

(poly)phenols and flavonoids. 

Experimental design and statistical analysis 

Experimental design and statistical analysis were 

performed in Design-Expert 13 software (Stat-Ease Inc, 

USA) using the RSM. 

A BBD, as a form of the RSM, was performed to 

determine the effect of three experimental factors 

(temperature, solid-to-solvent ratio, and ethanol 

concentration in solvent) on the output variables 

(responses) (Table 1). The extraction time was 30 min 

and an ultrasonic bath was used for mixing. 

Table 1. Coded and actual levels of independent variables used 

in the RSM design for the process of ultrasonic extraction of 

blueberry leaves. 

Symbol Independent variables Levels 
-1 0 1 

A Temperature [°C] 25 45 65 
B Solid-to-solvent ratio [w/v] 1:15 1:30 1:45 
C The ethanol concentration in 

the solvent [vol. %] 
30 60 90 

BBD takes mid-level values of experimental 

factors, avoiding extreme axial points as in central 

composite design (CCD) [33]. In this paper, considering 

the existence of three experimental factors that have 

three levels, there will be 13 points at the middle level. 

However, two replicates were performed at the  
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midpoint of the design to allow estimation of pure error 

and to calculate the repeatability of the method, 

resulting in a total of 15 extractions to be performed. To 

achieve objective results, the experiments were 

randomized. 

The Responses in this study were the content of 

total (poly)phenols, flavonoids, and anthocyanins in the 

extract. 

The experimental data were fitted to a second-

order polynomial model to obtain the regression 

coefficients. The generalized second-order polynomial 

model used in the RSM is as follows: 

i i ii i ij i jY a a X a X a X X2

0= + + +    (2) 

where Y represents the experimental response, a0 is a 

constant, ai, aii, and aij are coefficients of linear, 

quadratic, and interactive regression models, and Xi 

and Xj are independent variables in coded values. 

Lack of fit, coefficient of determination (R2), and p-

value obtained by analysis of variance (ANOVA) were 

used to assess the adequacy of the developed model. 

Regression analysis and Surface plots were generated 

to explain the effects of independent variables on the 

response. 

 
 

RESULTS AND DISCUSSION 

According to the BBD with three factors, 15 

extractions were performed, and the measured and 

predicted values of response are shown in Table 2. The 

table also shows the extraction yield, i.e. the measured 

response value presented as mass percentage (w/w). 

 

Table 2. Yield, measured and predicted values for the response variables. 
Std Run Process parameters   Responses  

Temp 
[°C] 

Solid-to-
solvent ratio 

[w/v] 

Ethanol 
concentration 

in solvent 
[vol%] 

Total (poly) phenol content Flavonoid content Anthocyanin content  
Measured 

[mg/g] 
Predicted 

[mg/g] 
Yield 

[%; w/w] 
Measured 

[mg/g] 
Predicted 

[mg/g] 
Yield 

[%; w/w] 
Measured 

[mg/g] 
Predicted 

[mg/g] 
Yield 

[%; w/w] 

3 1 25 1:45 60 56.42 57.76 5.64 26.04 25.79 2.60 0.21 0.24 0.021 
10 2 45 1:45 30 56.79 53.88 53.8 29.27 29.27 2.93 0.24 0.21 0.024 
13 3 45 1:30 60 52.20 50.25 5.22 33.57 36.28 3.36 0.29 0.33 0.029 
15 4 45 1:30 60 49.50 50.25 4.95 30.13 36.28 3.01 0.42 0.33 0.042 
1 5 25 1:15 60 32.52 30.17 3.52 23.85 23.97 2.39 0.20 0.22 0.020 
6 6 65 1:30 30 54.70 55.26 5.47 42.16 42.29 4.22 0.32 0.37 0.032 
8 7 65 1:30 90 48.84 47.27 4.88 34.24 33.99 3.42 0.54 0.54 0.054 
7 8 25 1:30 90 39.38 38.82 3.94 18.29 18.16 1.83 0.31 0.26 0.031 

11 9 45 1:15 90 26.68 29.59 2.67 20.97 20.98 2.10 0.19 0.22 0.019 
5 10 25 1:30 30 40.34 41.91 4.03 25.78 26.03 2.58 0.06 0.06 0.006 

14 11 45 1:30 60 49.04 50.25 4.90 35.87 36.28 3.59 0.34 0.33 0.034 
4 12 65 1:45 60 57.47 59.82 5.75 40.34 40.22 4.03 0.70 0.69 0.070 

12 13 45 1:45 90 50.66 49.88 5.07 22.27 22.65 2.23 0.45 0.46 0.045 
9 14 45 1:15 30 35.87 36.65 3.59 30.91 30.53 3.06 0.11 0.09 0.011 
2 15 65 1:15 60 51.24 49.90 5.12 41.38 41.63 4.14 0.39 0.36 0.039 

 

From Table 2, it can be observed that the highest 

content of total (poly)phenols (57.47 mg/g) was 

achieved at a higher temperature (65 °C), a higher 

solid-to-solvent ratio (1:45 w/v), and an ethanol 

concentration of 60 vol.%, while the lowest content 

(26.68 mg/g) was achieved at a temperature of 45 °C, 

a solid-to-solvent ratio of 1:15 w/v, and an ethanol 

concentration of 90 vol.%. It can be concluded that 

higher temperatures and higher solid-to-solvent ratios 

increase the efficiency of (poly)phenol extraction, while 

lower (poly)phenol content was obtained at medium 

temperature values and lower solid-to-solvent ratios, 

suggesting that these conditions are less efficient for 

the extraction of total (poly)phenols. The highest 

flavonoid content (42.16 mg/g) was obtained at higher 

temperatures (65 °C), the lowest ethanol concentration 

(30 vol.%), and medium solid-to-solvent ratios 

(1:30 w/v), while lower flavonoid contents (18.29 mg/g) 

were obtained at lower temperatures (25 °C), higher 

ethanol concentrations (90%), and a solid-to-solvent 

ratio of 1:30 w/v. This may indicate that high ethanol 

concentrations and low temperatures are not suitable 

for flavonoid extraction. Similar to flavonoids, the 

highest anthocyanin content (0.70 mg/g) was achieved 

at a temperature of 65 °C, and the lowest content 

(0.06 mg/g) at low temperatures (25 °C) and low 

ethanol concentration (30 vol.%). UAE has shown 

efficiency in extracting bioactive compounds due to its 

ability to enhance solvent penetration and allow better 

diffusion of compounds from plant cells. However, 

comparing the effect of UAE from this study and 

microwave-assisted extraction (MAE) from the 

study [34], it can be observed that MAE achieved 

higher yields of (poly)phenols in shorter extraction 

periods.  

For detailed determination of the influence of 

process parameters on ultrasound-assisted extraction, 

ANOVA analysis and evaluation of the obtained models 

are used. 

The experimental data of each measured variable 

were fitted into a complete quadratic model. Polynomial 
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coefficients for the surface response model were 

calculated by multiple regressions. An F-value and a p-

value were also calculated for each member of the 

regression model. Choosing a reliability level of 95%, a 

p-value greater than 0.05 was not considered 

statistically significant. The adjusted R2 and predicted 

R2 were evaluated, to determine whether the given 

model is adequate after eliminating parameters that do 

not have a significant impact, i.e., whether the model 

can accurately predict the responses under different 

process conditions. ANOVA results for the response 

surface quadratic model of blueberry leaf extraction are 

shown in Table 3. 

 

Table 3. ANOVA results for the response surface quadratic model of blueberry leaf extraction. 
Source df Total (poly) phenol content Flavonoid content Anthocyanin content 

Sum of 

Squares 

Mean 

Square 

F-

value 

p-

value 

Sum of 

Squares 

Mean 

Square 

F-

value 
p-value 

Sum of 

Squares 

Mean 

Square 

F-

value 

p-

value 

Model 9 1229.64 136.63 15.46 0.0038 857.36 95.26 26.69 0.0011 0.3694 0.0410 19.27 0.0023 

Temperature (A) 1 237.51 237.51 26.88 0.0035 514.56 514.56 144.15 < 0.001 0.1713 0.1713 80.46 0.0003 

Solid-to-solvent 

ratio (B) 

1 
703.69 703.69 79.64 0.0003 0.0820 0.0820 0.0230 0.8854 0.0638 0.0638 29.97 0.0028 

Ethanol 

concentration(C) 

1 
61.27 61.27 6.93 0.0463 130.82 130.82 36.65 0.0018 0.0710 0.0710 33.35 0.0022 

AB 1 78.06 78.06 8.83 0.0311 2.61 2.61 0.7307 0.4317 0.0228 0.0228 10.73 0.0221 

AC 1 6.00 6.00 0.6793 0.4473 0.0462 0.0462 0.0129 0.9138 0.0003 0.0003 0.1381 0.7254 

BC 1 2.34 2.34 0.2649 0.6287 2.16 2.16 0.6054 0.4717 0.0045 0.0045 2.13 0.2043 

A² 1 5.68 5.68 0.6430 0.4590 0.7230 0.7230 0.2025 0.6715 0.0112 0.0112 5.24 0.0707 

B² 1 15.89 15.89 1.80 0.2376 53.88 53.88 15.09 0.0116 0.0003 0.0003 0.1188 0.7443 

C² 1 118.79 118.79 13.44 0.0145 161.08 161.08 45.13 0.0011 0.0216 0.0216 10.14 0.0244 

Residual 5 44.18 8.84   17.85 3.57   0.0106 0.0021   

Lack of Fit 3 38.35 12.78 4.39 0.1912 0.6014 0.2005 0.0232 0.9938 0.0084 0.0028 2.44 0.3036 

Pure Error 2 5.83 2.91   17.25 8.62   0.0023 0.0011   

Cor Total 14 1273.82    875.21    0.3801    

Fit Statistics 

R²=0.9653 

Adjusted R²=0.9029 

Predicted R²=0.5080 

Adeq Precision=12.4569 

R²=0.9796 

Adjusted R²=0.9447 

Predicted R²=0.9429 

Adeq Precision=15.6404 

R²=0.9720 

Adjusted R²=0.9216 

Predicted R²=0.6343 

Adeq Precision=16.6827 

 

The R2 values for the content of total 

(poly)phenols, flavonoids, and anthocyanins in the 

extracts are 0.965, 0.980, and 0.975, respectively. This 

showed that the response variability was well explained 

in the generated model, as the models were able to 

explain 96.5% of the variation in the total (poly)phenol 

content, 98.0% of the variation in the flavonoid value, 

and 97.5% of the variation in the anthocyanin content 

in the extracts. The R2 value for all three cases is close 

to 1, which reveals that there is a good correlation 

between the independent variables and the response. 

The adjusted R2 is the corrected value for R2 after 

eliminating terms in the model that do not have a 

significant effect on the responses. The values of the 

content of total (poly)phenols, flavonoids, and 

anthocyanins in the extracts are 0.903, 0.943, and 

0.922, respectively. These values are very close to the 

R2 values, which means that the proposed models can 

very easily explain the different variations even by 

eliminating members whose p-values are greater than 

0.05. 

Predicted R2 is used to determine how well a 

regression model makes predictions. The values for 

predicted R2 for the content of total (poly)phenols, 

flavonoids, and anthocyanins in the extracts are 0.508, 

0.945, and 0.634, respectively. The predicted R² for 

total (poly)phenol content (0.508) and anthocyanin 

content (0.634) is not close to the adjusted R² (for total 

(poly)phenols it is 0.903 and 0.922 for anthocyanins) as 

expected; that is, the difference is greater than 0.2. This 

may indicate that the model fits the original data, but the 

predictions are not accurate enough. This indicates that 

the model is complicated and begins to model noise in 

the data (a condition known as 'overfitting the 

model') [35]. The difference between adjusted R² 

(0.945) and predicted R² (0.943) for the content of 

flavonoids in the extract is extremely small, which 

means that the obtained model provides valid 

predictions for the new observations. 

Adeq Precision represents the signal-to-noise 

ratio. Its values for the content of total (poly)phenols, 

flavonoids, and anthocyanins in extracts are 12.5, 15.6, 

and 16.7, respectively. The values for all three 

responses are over 4, which indicates that the signal is 

adequate. 

Lack of fit can be used to confirm the validity of 

the model. By ANOVA analysis for lack of fit values of 

all responses, it was determined that the p-value is 

significantly higher than 0.05, which indicates that the 

models are adequately adapted to the experimental 

data. 

Influence of process parameters on the value of total 
(poly) phenol content in the extract 

Table 4 shows coded and uncoded coefficients of 

the regression equation and p-values for members in 

the proposed quadratic model for the content of total 

(poly)phenols in blueberry leaf extracts. 

ANOVA analysis revealed that the content of total 
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Table 4. Regression coefficients and p-values for all Responses. 

Variables 

Total (poly) phenol content Flavonoid content Anthocyanin content 

Coded 

Regression 

coefficients 

Actual 

Regression 

coefficients 

p-value Coded 

Regression 

coefficients 

Actual 

Regression 

coefficients 

p-value Coded 

Regression 

coefficients 

Actual 

Regression 

coefficients 

p-value 

Constant +50.25 -22.27383 <0.0001 +36.28 -14.51734 <0.0001 +0.3291 +0.008202 <0.0001 

Temperature (A) +5.45 +0.557594 0.0035 +8.02 +0.392937 < 0.0001 +0.1463 -0.011751 0.0003 

Solid-to-solvent 

ratio (B) 
+9.38 +1.73910 0.0003 +0.1012 +1.04854 0.8854 +0.0893 -0.007663 0.0028 

Ethanol 

concentration (C) 
-2.77 +0.704903 0.0463 -4.04 +0.704938 0.0018 +0.0942 +0.011736 0.0022 

AB -4.42 -0.014725 0.0311 -0.8075 -0.002692 0.4317 +0.0756 +0.000252 0.0221 

AC -1.22 -0.002042 0.4473 -0.1075 -0.000179 0.9138 -0.0086 -0.000014 0.7254 

BC +0.7650 +0.001700 0.6287 +0.7350 +0.001633 0.4717 +0.0337 +0.000075 0.2043 

AA +1.24 +0.003101 0.4590 +0.4425 +0.001106 0.6715 +0.0550 +0.000137 0.0707 

BB -2.07 -0.009220 0.2376 -3.82 -0.016978 0.0116 -0.0083 -0.000037 0.7443 

CC -5.67 -0.006302 0.0145 -6.60 -0.007339 0.0011 -0.0765 -0.000085 0.0244 

 

(poly)phenols in the extract is strongly influenced by the 

following parameters (p < 0.05): temperature (A), solid-

to-solvent ratio (B), ethanol concentration in the solvent 

(C), the interaction of temperature and the solid-to-

solvent ratio (AB) and the square of the ethanol 

concentration in the solvent (CC). 

By discarding members that do not have a large 

impact, the regression equation for the content of total 

(poly)phenols in the extract has the following form: 

Y A B

C AB CC

22.27383 0.55759 1.73910

      0.70490 0.01473 0.0063

= − +  + 

+  −  − 
 (3) 

To assess the influence of input parameters on 

the content of total (poly)phenols in the extract, surface 

plots were constructed, as shown in Figure 2. 

 
Figure 2. Surface plots for the content of total (poly)phenols in 

the extracts in the interaction of (a) solid-to-solvent ratio and 

temperature, (b) ethanol concentration in the solvent and 

temperature, and (c) ethanol concentration in the solvent and 

solid-to-solvent ratio. 

Figure 2a shows the influence of the solid-to-

solvent ratio (B) and temperature (A) on the value of the 

total (poly)phenols content in the extracts based on the 

mean level (0) of the ethanol concentration in the 

solvent (C). It was observed that the value of the 

response increases linearly with the increase in the 

solid-to-solvent ratio (B) and temperature (A). The 

lowest value of the Response (<35 mg GAE/g) is 

achieved in the range of the solid-to-solvent ratio of 

1:15—1:20 w/v and temperature of 25—35 °C, while the 

highest values of the Response (>55 mg GAE/g) are 

achieved in over the entire range of the solid-to-solvent 

ratio of 1:40—1:45 w/v independent of temperature. Bai 

et al. found that a higher solid-to-solvent ratio improved 

the extraction yield of phenolic compounds from plant 

materials using UAE [36]. Similar to our findings, they 

observed a linear increase in the extraction efficiency 

with an increase in the solid-to-solvent ratio. Chemat et 

al. highlighted that the solid-to-solvent ratio is a critical 

parameter in the UAE, influencing the mass transfer 

and solubility of phenolic compounds [37]. Their 

findings support our results, emphasizing the 

importance of optimizing this ratio to achieve maximum 

extraction efficiency. 

Figure 2b shows the influence of the ethanol 

concentration in the solvent (C) and temperature (A) on 

the value of the total (poly)phenols content in the 

extracts at the mean value of the solid-to-solvent (B) 

ratio. It is observed that low and high ethanol 

concentration in the solvent leads to a slightly lower 

value of the Response, than when ethanol with medium 

values (45—65 vol.%) is used. Herrero et al. reported 

that both very low and very high ethanol concentrations 

can reduce extraction efficiency. Low ethanol content 

may not sufficiently disrupt cell walls, while high ethanol 

content can reduce solvent polarity, hindering the 

extraction of polar phenolic compounds [38]. This 

aligns with our results showing lower extraction 

efficiency at low (<35 vol.%) and high (80—90 vol.%) 

ethanol concentrations. Observing the interaction of 

parameters A and C, it is observed that Response 

values of 40—45 mg GAE/g are achieved at lower 

temperatures (25—40°C) in the entire range of ethanol 

concentration in the solvent (C). By raising the 

temperature, there is an increase in the value of the 

Response (>55 mg GAE/g), where this increase is 

more pronounced at the ethanol concentration of  
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30—65 vol.% than at the ethanol concentration of  

65—90 vol.%. Chemat et al. found that moderate 

temperatures (around 50—60°C) optimize UAE 

efficiency by increasing solvent penetration and 

compound solubility without degrading sensitive 

phenolic compounds [37]. This is consistent with our 

findings of optimal extraction at increased 

temperatures.  

From Figure 2c, it can be seen that the high 

content of ethanol in the solvent (80—90 vol.%) and the 

low solid-to-solvent ratio (1:15—1:20 w/v) have an 

extremely unfavorable effect on the extraction of total 

(poly)phenols from blueberry leaves. Also, at the same 

solid-to-solvent ratio and ethanol concentration in 

solvent lower than 35 vol.%, the extraction of total 

(poly)phenols is unfavorable (<35 mg GAE/g). With an 

increase in the solid-to-solvent ratio, there is a linear 

increase in the value of the Response, whereby this 

increase is more pronounced with the use of ethanol 

concentration of 30—65 vol.%. 

Influence of process parameters on the value of 
flavonoid content in the extract 

ANOVA analysis for the content of flavonoids in 

blueberry leaf extracts (Table 4) revealed that the 

following parameters have a great influence (p<0.05) 

on the extraction of flavonoids from blueberry leaves: 

linear terms - temperature (A) and ethanol 

concentration in the solvent (C), and quadratic terms - 

the solid-to-solvent ratio (BB) and ethanol 

concentration in solvent (CC). The abbreviated 

regression equation for the content of flavonoids in the 

extract has the following form: 

Y A C BB

CC

14.51734 0.39293 0.70493 0.01697

      0.00733

= − +  +  − 

− 
 (4) 

Figure 3 shows Surface plots for flavonoid content 

in the extract. 

Figure 3a shows the influence of the solid-to-

solvent ratio (B) and temperature (A) on the value of the 

flavonoid content in the extracts based on the mean 

level (0) of the ethanol concentration in the solvent (C). 

At lower temperatures (25—30 °C), at very low solid-to-

solvent ratios (1:15—1:20 w/v) on the one hand, and 

very high solid-to-solvent ratios (1:40—1:45 w/v) on the 

other hand, work unfavorably for the extraction of 

flavonoids, and under these conditions <25 mg CTH/g 

of flavonoids is extracted. This aligns with Bai et al., 

who found that an optimal solid-to-solvent ratio is 

crucial for maximizing extraction efficiency due to its 

impact on mass transfer dynamics [36]. From the plot, 

it can be seen that the parameter of solid-to-solvent 

ratio (B) has no great influence on the Response, which 

graphically confirmed the results of the ANOVA 

analysis; on the other hand, the plot shows a great 

influence of temperature, i.e. with the increase of that 

parameter there is a marked increase in the content of 

flavonoids in the extract. The highest content of 

flavonoids (>40 mg CTH/g) is achieved at temperatures 

higher than 55 °C, at any solid-to-solvent ratio. This 

observation is consistent with Chemat et al., who 

reported enhanced extraction efficiency at higher 

temperatures (55—65°C), attributed to improved solvent 

penetration and enhanced solubility of flavonoids [37]. 

 
Figure 3. Surface plots for the content of flavonoids in the 

extracts with mutual interaction: (a) the solid-to-solvent ratio and 

temperature, (b) ethanol concentration in the solvent and 

temperature, and (c) ethanol concentration in the solvent and 

the solid-to-solvent ratio. 

Figure 3b shows that both the ethanol 

concentration in the solvent (C) and the temperature (A) 

have a significant effect on the ultrasound-assisted 

extraction of flavonoids from blueberry leaves. The use 

of a solvent containing 80—90% ethanol is unfavorable 

for the extraction of flavonoids. This finding mirrors 

Herrero et al., who noted reduced extraction efficiency 

at very high ethanol concentrations due to solvent 

polarity effects and inadequate disruption of cell walls 

[38]. This influence is particularly clear during extraction 

at lower temperatures (25—35 °C) because <20 mg 

CTH/g flavonoids are extracted. Contrary to those 

process conditions, with ethanol concentration in the 

solvent in the interval 30—60 vol.% and temperatures 

55—65 °C, there is the most intensive extraction of 

flavonoids (>40 mg CTH/g). 

Observing the influence of the ethanol 

concentration in the solvent (C) and the solid-to-solvent 

ratio (B), Figure 3c, it is noticed that a plateau is 

reached at certain values. The maximum value of 

flavonoids in the extract (>35 mg CTH/g) is achieved 

when the ethanol concentration in the solvent is in the  
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range of 35—65% and the solid-to-solvent ratio is in the 

range of 1:20—1:35 w/v. Moving away from that range, 

the flavonoid content in the extract decreases, which is 

particularly clear with an increase in the ethanol 

concentration up to 90%. This corroborates with 

findings by various authors emphasizing the critical role 

of balanced ethanol concentration and solid-to-solvent 

ratio for maximizing bioactive compound extraction 

efficiency [37]. 

Influence of process parameters on anthocyanin 
content value in the extract 

ANOVA analysis (Table 4) revealed that the 

extraction of anthocyanins from blueberry leaves is 

influenced by the following factors: temperature (A), 

solid-to-solvent ratio (B), and ethanol concentration in 

the solvent (C), square of temperature (AA) and square 

of ethanol concentration in the solvent (CC). By 

eliminating factors that have no influence, the 

regression equation for anthocyanin content in the 

extract takes the form: 

Y A B C

AA CC

0.01175 0.00766 0.01173

     0.0001

0.00

3 0.

82

000085

−  −  + 

+  − 

=  (5) 

 
Figure 4. Surface plots for the content of anthocyanins in the 

extracts with mutual interaction: (a) solid-to-solvent ratio and 

temperature, (b) ethanol concentration in the solvent and 

temperature, and (c) ethanol concentration in the solvent and 

the solid-to-solvent ratio. 

From Figure 4a (influence of the solid-to-solvent 

ratio (B) and temperature (A)), it can be seen that the 

extraction of anthocyanins is favored by an extremely 

narrow range of process parameter values. First of all, 

it is observed that only at high temperatures (60—65 °C) 

and high solid-to-solvent ratios (1:40—1:45 w/v) can the 

maximum yield of anthocyanins in the extract be 

achieved (>0.6 mg Cy3G/g). In contrast, by comparing 

Figure 4b and Figure 4c, it can be seen that the 

extraction of anthocyanins is poorly efficient at the 

following process conditions: ethanol concentration in 

the solvent of 30—50 vol.%, temperature of 25—50 °C 

and the solid-to solvent ratio of 1:15—1:25 w/v. High 

solid-to-solvent ratios and high temperatures 

significantly improve extraction efficiency, while 

moderate ethanol concentrations are less effective. 

These findings are consistent with established 

literature, underscoring the importance of precise 

parameter optimization for maximizing anthocyanin 

yields using UAE techniques [39,40]. 

Optimization 

Figure 5 shows the optimization plot for the 

content of total (poly)phenols in the extract. The 

maximum content of (poly)phenol in the extract is taken 

as a target, which is why there is only one solution. The 

optimal process parameters are temperature 48.4 °C, 

solid-to-solvent ratio 1:43.8 w/v, and ethanol 

concentration in the solvent 51.3 vol.%, whereby the 

value of Response is 57.5 mg GAE/g. The composite 

desirability is equal to one, indicating that the setting 

provided the most favorable results. 

 
Figure 5. Optimization plot for total (poly)phenols content in the 

extract. 

The optimization plot for the content of flavonoids 

in the extract is shown in Figure 6. Temperature 

58.5 °C, solid-to-solvent ratio of 1:29.8 w/v, and ethanol 

concentration in the solvent 48.0 vol.% are the optimal 

process parameters for the extraction of the maximum 

content of flavonoids (44.38 mg CTH/g). As in the case 

of optimization of total (poly)phenols, the composite 

desirability is equal to unity. 

Finally, optimization of process conditions for 

ultrasound-assisted extraction (UAE) of anthocyanins 

from blueberry leaves was carried out (Figure 7). As in 

the previous two optimizations, the aim is to maximize 

Response and composite desirability. The optimal 

process conditions are temperature 64.2 °C, solid-to-

solvent ratio 1:44.7 w/v, and ethanol concentration in  
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Figure 6. Optimization plot for flavonoid content in extract. 

 
Figure 7. Optimization plot for anthocyanins content in extract. 

the solvent 73.5 vol.%. Under these conditions, 0.71 mg 

Cy3G/g of anthocyanin is extracted. 

When the temperature is considered as a process 

parameter, it is noticeable that temperatures lower than 

45 °C are not favorable for extraction. First of all, the 

viscosity of the solvent at lower temperatures is higher, 

and the solubility of the dissolved substance and the 

diffusion coefficient are lower, which adversely affects 

the extraction process [41]. On the other hand, by 

analyzing the optimal time for all three Responses, it is 

noticeable that high temperatures do not have a 

favorable effect on the extraction of (poly)phenolic 

compounds. The reason for such a phenomenon lies in 

the fact that phenolic compounds are thermosensitive, 

i.e. their thermal decomposition occurs at high 

temperatures [41,42]. In this work, the optimal 

temperature for the extraction of total (poly)phenols is 

lower (48.4 °C) compared to the extraction of 

anthocyanins (64.2 °C), which means that 

anthocyanins from blueberry leaves are more resistant 

to higher temperatures than other phenolic compounds 

(phenolic acids, stilbenes, tannins, flavonoids, etc.). 

When total (poly)phenols and anthocyanins are 

examined, it is evident that the highest degree of 

extraction is obtained at close to the highest solid-to-

solvent ratio (1:43.8—1:44.7 w/v). This could be due to 

the increased contact area between the sample and the 

solvent, allowing for more effective mass transfer of the 

(poly)phenolic compounds from the solid matrix to the 

liquid phase. A higher ratio may result in faster mass 

transfer, which may result in higher yields due to the 

amount of solvent available to dissolve the 

(poly)phenolic compound. Higher solvent content in an 

extraction system often improves extraction efficiency 

because more solid material is available for interaction 

with the solvent [43]. On the other hand, the maximum 

content of flavonoids is extracted at a solid-to-solvent 

ratio of 1:29.8 w/v. The most likely explanation for this 

phenomenon is that a very high solid-to-liquid ratio may 

cause contaminants to dissolve, reducing the solubility 

of flavonoids [44]. 

The extraction of total (poly)phenols and 

flavonoids has a positive effect on the medium values 

of the ethanol concentration in the solvent (51.3 vol.% 

and 48.0 vol.%, respectively), while for the extraction of 

anthocyanins, the optimal ethanol concentration in the 

solvent is higher and amounts to 73.5 vol.%. Lower 

concentrations of ethanol penetrate plant cells more 

easily, making phenolic extraction easier. Ethanol at 

greater concentrations can cause protein denaturation, 

impede phenolic breakdown from the matrix, and 

diminish the production of (poly)phenolic 

compounds [45]. The combination of water and ethanol 

allows efficient (poly)phenol extraction because water 

acts as a swelling agent and ethanol breaks down the 

bonds between the solutes and the floral matrix; 

therefore, high ethanol concentration in solvent yields a 

smaller yield of (poly)phenolic compounds [46].  

In comparison with the full factorial design used in 

previous research [32], the BBD offers several 

significant advantages. The BBD is more efficient in 

investigating quadratic effects and interactions 

between factors, as it better covers the area of interest 

without the need for extreme values of the factors. This 

results in more robust models that can provide more 

precise estimates of optimal conditions for the 

processes being studied. Also, The BBD allows for 

more efficient experimental planning, reducing 

redundancy and potential errors in conducting 

experiments. In this way, the obtained results are more 

reliable and can be better applied in practice. 

 

 
CONCLUSION 

 

The experimental data fit well into the obtained 

models, as confirmed by the high degrees of correlation 

(R2 and adjusted R2). The model accurately predicts 

flavonoid content, but not total (poly)phenols and 
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anthocyanins. Extraction is adversely affected by low 

temperatures due to slow diffusion and high 

temperatures due to the thermosensitivity of phenolic 

compounds. Anthocyanins can be extracted at slightly 

higher temperatures owing to their greater heat 

resistance. Total (poly)phenols and anthocyanins are 

better extracted at higher solid-to-solvent ratios due to 

a larger concentration gradient. However, flavonoids 

are better extracted at lower ratios to avoid components 

that reduce their solubility. Medium ethanol 

concentrations are optimal for phenolic compound 

extraction, as ethanol penetrates plant material 

effectively, while higher concentrations denature 

proteins and hinder extraction. The optimization of 

process parameters using the BBD demonstrated that 

UAE effectively enhances the release of bioactive 

compounds, achieving maximum yields under specified 

conditions as follows: for (poly)phenols, 48.4 °C, 

51.3 vol.% ethanol, and 1:43.8 w/v solid-to-solvent 

ratio; flavonoids, 58.5 °C, 48.0 vol.% ethanol, and 

1:29.8 w/v ratio; and anthocyanins, 64.2 °C, 73.5 vol.% 

ethanol, and 1:44.7 w/v ratio. The bioactive 

components have potential applications in functional 

foods, nutraceuticals, pharmaceuticals, and cosmetics, 

and further research could expand their use. 
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Cilj rada je da utvrdi optimalne uslove za ultrazvučnu ekstrakciju (UAE) (poli)fenolnih 

jedinjenja iz lišća borovnice (Vaccinium mirtillus). UAE je izvedena pod sledećim 

procesnim uslovima: temperatura od 25—65 °C, koncentracija etanola u rastvaraču za 

ekstrakciju od 30—90 vol.%, i odnos čvrsta materija prema rastvaraču od 1:15—1:45 v/v. 

Statistička analiza je izvršena korišćenjem softvera Design-Expert, korišćenjem Boks-

Benkenovog dizajna. Odgovori su bili sadržaj ukupnih (poli)fenola, flavonoida i antocijana 

u dobijenim ekstraktima. Rezultati su pokazali da su odgovarajući modeli površine 

odgovora visoko statistički značajni (p < 0,0001) i dovoljni da opišu i predvide sadržaj 

ukupnih (poli)fenola, sadržaj flavonoida i sadržaj antocijana sa R2 od 0,965, 0,980 i 0,972, 

redom. Optimalni uslovi za ekstrakciju su za ukupne (poli)fenole 48,4 °C, 51,3 vol.% 
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etanola i 1:29,8 v/v odnos čvrsta materija/rastvarač; i za antocijanine 64,2 °C, 73,5 vol.% 

etanola i 1:44,7 v/v odnos čvrsta materija/rastvarač. Upotreba UAE povećava prinose 

ekstrakcije povećanjem oslobađanja bioaktivnih jedinjenja, dok primena Boks-

Benkenovog dizajna omogućava precizno određivanje optimalnih parametara 

ekstrakcije, čime se postižu maksimalni prinosi i efikasnost. 
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Article Highlights  

• The five significant characteristics of grapes observed by image processing during the 

drying process 

• An ANN approach is developed to classify completely dried grapes and partially dried 
grapes 

• The ANN model achieved a level of accuracy performance of 78% 

• The entirety of the grapes trends into raisins; the dehydration machine will cease 

operation 

 
Abstract  

This study introduces a machine vision technique that utilizes an artificial 

neural network (ANN) to develop a predictive model for classifying dried 

grapes during the drying process. The primary objective of this model is to 

mitigate the burden placed on the operator and minimize the occurrence of 

over-dried items. The present study involves the development of a model 

that is constructed using the characteristics of grape color and shape. There 

exist two distinct categories of labels for grapes: fully desiccated grapes, 

commonly referred to as raisins, and grapes that have undergone partial 

drying. Image processing is utilized to collect and observe five significant 

characteristics of grapes during the drying process. The findings indicate a 

significant decrease in the levels of red, green, and blue colors (RGB) during 

the initial 15-hour drying period. The predictive model extracts properties 

such as RGB color, roundness, and shrinkage from the image while it 

undergoes the drying process. The artificial neural network (ANN) model 

achieved a level of accuracy performance of 78%. In this work, the 

dehydration apparatus will cease operation in an automated manner 

whenever the entirety of the grapes situated on the tray has been projected 

to transform raisins. 

Keywords: machine vision; grape drying process; artificial neural 
network; embedded systems. 
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of food consumption on human well-being. Fiber-rich 

foods are particularly recommended, especially for the 

senior population, as outlined in the dietary guidelines 

represented by the food pyramid [1]. Fruits and 

vegetables are rich sources of dietary fiber, essential 

vitamins, and minerals. Nevertheless, the availability of 

fruits is restricted to their respective natural seasons for 

harvesting. The utilization of preservation techniques 

aids in prolonging the durability of fruit-based products. 

Dehydration is a fundamental method employed in fruit 

preservation to decrease the moisture content of fruits. 

http://www.ache.org.rs/CICEQ
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The primary advantage of dehydration is the extension 

of a product's shelf life. An additional aspect to consider 

is the convenience of portability and transportation. The 

dehydration technique is well recognized and utilized in 

both industrial and home environments. In recent 

years, there have been notable advancements in 

dehydration technology, resulting in enhancements in 

the quality, color, texture, and nutritional composition of 

dehydrated products. Hence, the utilization of 

dehydrated food effectively meets the requirements of 

consumers. Dehydrated items are commonly observed 

in several food categories such as breakfast cereals, 

bakeries, snacks, desserts, and convenience meals [2]. 

Enhancing the quality of dehydrated fruit has 

become a critical area of investigation. A multitude of 

scholarly investigations have been conducted to 

examine the control algorithms employed in dehydrator 

machines. To regulate the temperature within the 

chamber, the researchers employed a proportional-

integral-derivative (PID) controller that was calibrated 

using fictitious reference iterative tuning (FRIT) based 

on Particle Swarm Optimization (PSO) [3]. Another 

investigation was conducted to regulate the ultimate 

moisture content (MC) level of the grain. The 

application of the genetically optimized fuzzy immune 

proportional integral derivative controller (GOFIP) was 

utilized to manage grain dryer machines [4]. 

Numerous research investigations have 

commenced by investigating the morphological 

changes that occur in fruit during the drying process 

under various environmental conditions. For example, 

in a study conducted by Karaaslan et al. (2017), 

microwave oven drying was employed to examine the 

impact of moisture ratio on grape drying by utilizing 

various power levels [5]. Carter et al. (2005) conducted 

a study to investigate the correlation between the 

moisture content (MC) of grapes and the power level of 

microwave hoover technology [6]. The research 

examples aimed to gain comprehension of the impact 

of power levels and moisture content of grapes, 

followed by the implementation of mathematical 

models. In their study, Ojediran et al. (2020) presented 

a novel approach utilizing an Artificial Neural Network 

(ANN) that incorporates the Takagi-Sugeno fuzzy 

inference system. This approach, known as the 

Adaptive Neuro-Fuzzy Inference System, was 

employed to accurately forecast the residual moisture 

content of yam slices under convective conditions. The 

input parameters comprised time, temperature, air 

velocity, and thickness [7]. 

Numerous researchers have endeavored to 

enhance the quality of dehydrated items by the 

integration of machine vision technology inside their 

systems. Machine vision is a commonly employed 

technique for the surveillance and analysis of objects' 

chromatic properties, geometric characteristics, and 

surface qualities. One instance was the utilization of 

machine vision in a far-infrared drying system to 

monitor many attributes of ginger, including its 

properties, moisture ratio, drying rate, browning index, 

and color difference. The three-stage fuzzy logic control 

system received two parameters, specifically the 

browning index and the color difference, as its inputs. 

The required temperature of the chamber is indicated 

by the output [8]. Furthermore, the color difference, 

browning index, perimeter, area, intensity, and 

diameter of banana slices were observed and recorded 

throughout the hot air-drying procedure [9]. 

Over the past decade, ANN has been prominent 

in the field of dehydration systems. The researchers 

developed several models for determining the moisture 

content of grapes by employing ANN and machine 

vision techniques [10]. Furthermore, ANN was 

employed to forecast the drying kinetics of paddy, 

encompassing the moisture ratio and drying rate [11]. 

Another use of machine learning involves the utilization 

of categorization models for predictive purposes. The 

classification of freeze-dried apples with red flesh, such 

as 'Lex Red', 'Trinity', '314', and '602 Red', was 

conducted by analyzing image textures and color [12]. 

For example, the classification of two sultana 

genotypes, Kecimen and Bensni, was conducted using 

various textural parameters including area, perimeter, 

main axis length, minor axis length, eccentricity, convex 

area, and extent [13]. In their study, Krzysztof et al. 

(2020) employed acoustic signals, comprising 

frequency and sound level, in conjunction with the ANN 

Multi-Layer Perceptron, to effectively categorize the 

dried strawberry as either ripe or overripe [14]. In their 

study, Masumeh et al. (2021) utilized ANN to forecast 

the moisture content of banana slices and microwave 

power density throughout the microwave drying 

procedure [15]. 

The enhancement of the quality of dehydration 

products is of considerable importance to researchers, 

as indicated by much-existing literature. Consequently, 

numerous promising strategies have emerged in this 

field. Nevertheless, there are still some areas that 

require further enhancement, one of which includes the 

development of cost-effective automatic control 

systems. During small-scale production, grape dryness 

is typically assessed by specialists by the observation 

of color, shrinkage, and texture alterations. In contrast, 

in industrial settings, the drying process typically 

terminates once the moisture level of the grapes 

reaches 13% [16]. This study proposes the 

implementation of machine vision technology for 

monitoring the dryness of grapes, providing an  
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alternative to conventional approaches that rely on 

expert evaluation or measuring moisture content. Thus, 

the primary focus of this study is to develop an ANN 

model to classify fully dried grapes (commonly known 

as raisins) and grapes that have undergone partial 

dehydration. This classification task is achieved 

through the utilization of machine vision data. The 

proposed approach involves employing machine vision 

techniques to monitor and gather data on the visual 

characteristics of the material, including color and form. 

These data serve as input parameters for predicting the 

classification of grapes during the drying process. 

Additionally, the embedded code operates on a 

Raspberry Pi, a cost-efficient device that utilizes cost-

effective technologies. 

 
 
MATERIAL AND METHODS 

Materials 

Throughout, a domestic food dehydrator machine 

was modified to be used as a drying system. The 

Raspberry Pi connected to the Raspberry Pi Camera 

module was attached to the top of the chamber to 

capture images, as shown in Figure 1. The Open-

source computer vision library (OpenCV) was 

integrated with Python to determine grapes' 

characteristics and classify grapes' labels. 

 
Figure 1. Drying chamber. 

The utilization of a domestic food dehydrator 

machine was adapted to serve as a drying system. The 

Raspberry Pi, which was connected to the Raspberry 

Pi Camera module, was affixed to the upper portion of 

the chamber to take photographs, as depicted in 

Figure 1. The integration of the Open-source computer 

vision library (OpenCV) with Python was utilized to 

determine the features of grapes and classify the labels 

associated with them. 

Preparation of grape samples 

Before the drying process, it was necessary to 

prepare fresh grapes (Ralli Red Seedless) by cleaning 

and extracting grape seeds. Initially, grapes samples 

were sensed and cleansed with fresh water. 

Subsequently, immerse the samples in hot water for 30 

seconds. Subsequently, proceed to rinse the washed 

grapes under a steady stream of cool water without 

delay. Subsequently, proceed to perforate minuscule 

apertures in the grapes and desiccate the unprocessed 

constituents by positioning them above a sanitary 

surface for approximately 10 minutes. 

Drying protocol 

Once the preparation of the raw materials was 

completed, proceed to position them onto a tray 

situated within the chamber. It was imperative to 

exercise control over the drying conditions in the 

experiment. It was crucial to position the grapes distinct 

from one another to extract the individual 

characteristics of each grape. The second need entails 

establishing the temperature at 56 °C. During the drying 

phase, several photos were recorded and transmitted 

to the Raspberry Pi controller. Moreover, an image-

processing approach was utilized to analyze the 

characteristics of each grape, including color, 

roundness, and shrinkage. The ANN technique was 

employed to classify the properties of both fully dried 

grapes (raisins) and partially dried grapes drying at 

regular intervals of twenty minutes. The input in the 

ANN procedure consisted of the features of the grapes. 

Upon the completion of the drying process, Raspberry 

Pi issued a command to activate a relay mechanism, so 

terminating the power supply to the drying apparatus. 

Additionally, the system implemented a graphical user 

interface (GUI) on top of the MQTT protocol in a real-

time system. 

The drying system's procedure commences with 

the preparation of images. During this procedure, a 

grayscale image of the region of interest (ROI) was 

acquired without any distortion. In the second stage of 

the image processing procedure, the attributes of 

grapes, including color, shrinkage, and roundness, 

were extracted after the preprocessing of the image. 

The third procedure involved the ANN technique. At this 

Juncture, the system categorized the grape data into 

two distinct labels: fully-dried grapes and partially-dried 

grapes. The dataset was divided into three distinct 

subsets, namely training, validation, and testing. During 

the training phase, the model for dried grapes was 

trained by establishing a mapping relationship between 

the model parameter and the desired output. Once the 

construction of the model was completed, the trained 

model was subsequently sent to the Raspberry Pi 

controller to conduct an analysis and classification of 

many attributes of dried grapes. In this instance, the 

image obtained from the camera within the chamber 

was categorized into two distinct labels. If the model's 

prediction indicates complete dehydration of all grapes, 

the relay circuit was responsible for deactivating the 
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heat source of the dehydrator machine. The 

comprehensive understanding of each component of 

the process was listed as follows. 

Process1: Image preprocessing 

The first protocol to categorize the quality of the 

dried grapes was performed via the image 

preprocessing method. The process commenced with 

the acquisition of RGB images. Subsequently, the 

undistort function, implemented by OpenCV, was 

employed to mitigate the distortion present in the 

image. To track any possible change during the drying 

process at a fast pace, the dimensions of the unaltered 

image were decreased from 1280 x 1024 pixels to 640 

× 512 pixels. Subsequently, the RGB color image was 

inputted into a grayscale transformation. The binary 

mask was utilized to apply the ROI and selectively 

choose the pixels of interest while excluding undesired 

pixels. During this particular stage, the undesired pixels 

were substituted with an intensity value of 127. The 

sample outcome is depicted in Figure 2. 

 
Figure 2. Sample result of preprocessing: (a) Result of 

undistorting and downscaling; (b) Result of converting RGB to 

grayscale; (c) Result of selecting ROI and changing intensity of 

background. 

Process2: Image feature extraction 

During this phase, the essential discernible 

characteristics of each grape, including RGB color, 

roundness, and shrinkage, were retrieved. The 

aforementioned attributes were utilized as input for 

training and making predictions. At this stage, the input 

consisted of the preprocessed image." Subsequently, 

median filters were implemented to diminish the 

presence of noise in the image. Afterward, adaptive 

thresholding was employed to distinguish foreground 

areas from the background, improving segmentation 

and significantly reducing glare effects compared to 

traditional thresholding techniques. In addition, a 

closing operator was utilized to examine each image for 

its geometric characteristics, specifically its shape, to 

enhance image segmentation. Consequently, the 

revised picture was applied to occupy any empty 

spaces. The morphological technique was successful 

in rectifying segmentation mistakes resulting from glare 

or shade. Additionally, the grapes were subjected to 

filtration based on their constituent components, 

followed by the delineation of the contour of interest. 

Ultimately, the essential characteristics of each grape 

were thoroughly isolated. The general procedure is 

depicted in Figure 3. Furthermore, it was necessary to 

monitor the location of each grape during the various 

stages of processing, as the drying process introduced 

a degree of uncertainty regarding the position of each 

grape. The Euclidean distance formula was used to 

compute the displacement between the previous and 

present positions of each grape. If the calculated 

distance is minimal, it is assumed that the location 

remains unchanged for the same grape. 

 
Figure 3. Sample result of feature extraction in the initial image 

from Figure 2c: (a) Result of filtering; (b) Result of applying 

adaptive thresholding; (c) Result of performing morphological 

process; (d) Result of filling holes; (f) Result of drawing grapes’ 

contour. 

The measurement of grape shrinkage during the 

drying process is based on the two-dimensional area 

ratio. This method is simpler and more practical than 

direct volume measurement, as outlined in Eq. (1) [10]. 

A t
S t

A

( )
( )

(0)
=     (1) 

where S(t) is the shrinkage at instantaneous time t. A(t) 

stands for the sample’s surface area in pixels at a time 

t. A(0) is the sample’s surface area in pixels at the initial 

time. 

In similia fashion, roundness was equated via 

Eq. (2): 

A t
R t

r t 2

( )
( )

( ( ))
=     (2) 

where R(t) is the roundness and the instantaneous 

radius of the grape r(t), measured in pixels, is defined 

as the radius of the smallest circle that completely 

encloses the grape. 

Process3: ANN classification 

The objective of the artificial neural network 

(ANN) was to distinguish between two classifications: 

slightly desiccated grapes and fully desiccated grapes. 

The experiment observed alterations in the hue, 
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circularity, and shrinkage of each grape as they 

underwent the process of dehydration at a temperature 

of 56 °C. The model was fed with inputs that 

encompassed the following characteristics: RGB color, 

roundness, and shrinkage, which were monitored 

during the drying process, as depicted in Figure 4.  

 
Figure 4. Architecture of the ANN. 

The data was partitioned into three sets using a 

random allocation method. Specifically, 64% of the data 

was assigned for training purposes, while 18% was 

allocated for validation and another 18% for testing. 

During the training data phase, the model's predictions 

were based solely on the training and validation data. 

Additionally, early stopping was employed to mitigate 

the issue of overfitting. The ANN performs intricate 

computations to analyze intricate patterns, such as the 

correlation between the characteristics of grapes and 

the corresponding output label, to classify raisins. The 

Multi-Layer Perceptron, a feedforward neural network, 

is utilized in this study, consisting of three hidden 

layers. Each hidden layer was comprised of eight 

nodes. Here, the rectified linear unit (ReLU) function 

was utilized in the hidden layers to perform the transfer 

of the weighted sum between layers. Additionally, the 

Rectified Linear Unit (ReLu) activation function was 

employed as a means of mitigating the issue of 

vanishing gradients [8]. It was noted that the Rectified 

Linear Unit (ReLU) originated from a mathematical 

function that was commonly used in artificial neural 

networks as shown in Eq. (3): 

( ) ( )
for z

f max z
z for z

z
0      0

0,
      0


= = 



   (3) 

where f is the function of ReLu and z is the weighted 

sum of a neuron. 

The sigmoid function was commonly used as an 

activation function in two-class classification tasks. It 

was applied to the weighted sum of inputs to turn it into 

a probability score. The output of the sigmoid function 

was binary, with values of either 0 or 1. In this 

experiment, 0 and 1 stand for partially dried and fully 

dried grapes respectively. Mathematically, the sigmoid 

function was formally defined via Eq. (4): 

( )
( )ze

z
1

1


−
=

+
    (4) 

where σ is the function of sigmoid and z is the weighted 

sum of a neuron. 

Process4: AC source controlling 

The final step involved regulating the AC power 

supply of the dehydration machine by the act of 

activating or deactivating it. The Raspberry Pi 

transmitted a command to a magnetic relay to regulate 

the power supply inside this system. The alternating 

current (AC) supply would be deactivated by the relay 

once the ANN model ascertained that all grapes had 

reached the desired level of dryness. 

 
 

RESULTS AND DISCUSSION 

To commence the experiment, an examination was 

conducted to study the drying characteristics of grapes 

at a temperature of 56 °C. The ANN model for 

classifying grapes into two distinct labels: partially dried 

grapes, and fully dried grapes utilizes five significant 

feature parameters: RGB color, roundness, and 

shrinkage. These parameters were employed as input 

during the training process of the model. The dataset 

was partitioned into three distinct sections. The training 

dataset consisted of 1,347 samples, which were utilized 

for training the model. Subsequently, a validation 

dataset including 380 samples was employed to assess 

the model's performance during the training process. 

The final set employed for testing purposes consisted 

of 370 instances, which were utilized to assess the 

performance of the model. 

Drying protocol 

The study focused on examining the physical 

phenomena of color and shape to evaluate the traits 

and properties of grapes during the drying process at a 

temperature of 56 °C. 

Initially, an examination was conducted on 27 

grapes to ascertain the average intensity change within 

each RGB color channel. The photographs were 

captured at intervals of 20 minutes. The average color 

characteristic is shown as follows Figure 5a. In 

accordance with the given prompt, the following 

response will address the academic nature of the user's 

text without adding any additional information: At the 

onset of the experiment, it was observed that the red 

color exhibited the highest intensity, followed by green 

and blue, respectively. Throughout the process of 

drying, it was evident that the red color exhibited the 



224 

RUANGURAI et al.: UTILIZING MACHINE VISION AND ARTIFICIAL NEURAL… Chem. Ind. Chem. Eng. Q. 31 (3) 219−227 (2025) 
 

 

 

greatest degree of variation, indicating a high level of 

sensitivity. Notably, there was a significant decline in 

the red color intensity for 15 hours, after which it 

reached a state of stability. The patterns for the 

intensity of green and blue colors were comparable. 

Initially, there was a minuscule increase. Subsequently, 

the intensity values underwent a rapid decrease and 

subsequently stabilized after 15 hours. In comparison 

to green and blue, it was worth noting that red exhibits 

the highest level of sensitivity. 

The shape of the grapes, taking into account 

factors such as roundness and shrinkage, represented 

the second attribute that could be observed. The 

roundness and shrinkage behavior of grapes exhibited 

similar patterns, as depicted in Figure 5b and Figure 5c, 

respectively. The form had a rapid decline for 

approximately 12 hours and afterward reached a state 

of stability, remaining unaltered. The sample grapes 

undergoing dehydration at a temperature of 56 °C are 

shown in Figure 6. 

 
Figure 5. Grape characteristics during the drying process at 

56 ˚C: (a) Result of RGB color; (b) Result of roundness; (c) 

Result of shrinkage. 

 
Figure 6. The grapes undergo dehydration at a temperature of 

56 °C. 

This experiment utilized a small sample size to 

demonstrate the effects of dehydration on grapes. The 

color and shape changes seen during the dehydration 

process remained similar across the entire bin. The 

grapes underwent dehydration, resulting in browning 

and shrinkage. The only significant differences seen 

were in their initial color and form. This indicates that 

the data is sufficient to accurately depict the 

characteristics of grape dryness throughout the 

dehydration process. 

Classification 

The classification label was divided into two 

distinct categories: fully dried grapes and partially dried. 

The ANN algorithm was applied across five batches of 

experiments, involving a total of 135 grapes. As a 

result, the dataset encompassed a total of 2,097 cases. 

The loss and accuracy curves of the training and 

validation were determined by the size of the training 

data set. Figure 7 displays the graphical representation 

of the performance of the model in terms of loss and 

accuracy. The utilization of the early stopping function 

resulted in training and validation accuracies of 0.78 

and 0.85, respectively. The performance of the training 

and validation loss functions was satisfactory, as 

indicated by the respective losses of 0.50 and 0.42. 

 
Figure 7. Train and validate learning curves of the ANN model: 

(a)Model loss; (b) Model accuracy. 

Following the prediction of the ANN model, a total 

of 370 instances were utilized to test the proposed 

model. The classification outcome is presented in 

Table 1, wherein two distinct classes are identified: 

class 1 represents fully dried grapes, while class 0 

represents partially dried grapes.  

Table 1. Confusion matrix for raisin classification in ANN model. 

 Actual 

Class 1  Class 0  

Predicted 
Class 1 (fully dried) 95  63  

Class 0 (partially dried) 18  194 

The section discussed the categorization of 

performance. Performance could be defined as the 

execution or accomplishment of a task, activity, or 

function, typically measured against predetermined 

criteria or standards. The precision of each class was 

quantified based on Eq. (5). 

( )j

j

j

j

TP

TP
P

FP
=

+
    (5) 



225 

RUANGURAI et al.: UTILIZING MACHINE VISION AND ARTIFICIAL NEURAL… 

 

Chem. Ind. Chem. Eng. Q. 31 (3) 219—227 (2025) 
 

 

 

where P is the precision for class j. TP stands for true-

positive and FP stands for false-positive for class j.  

Furthermore, the recall in each class (Rj) was 

defined as, 

( )j

j

j

j

TP

TP
R

FN
=

+
    (6) 

where FN stands for false-negative for class j.  

In addition, F1-score in each class (Fj) was 

defined as, 

( )
j

j

j

j j

P R

P R
F

2 
=

+
    (7) 

The accuracy parameter A was defined as 

follows: 

( )
TP TN

TP T P F
A

N F N

+
=

+ + +
   (8) 

where FP stands for false-positive.  

The findings indicate that the classification model 

achieved an accuracy of 78%, with a f1-score of 70%, 

and 83% for class 1 and class 0, respectively. 

Furthermore, the performance for class 1 and class 0 

was determined to be Table 2. 

Table 2. Overall classification performance measurement 

results. 

Class Precision Recall f1-score Accuracy  

Class 1 (fully 
dried) 

60% 84% 70% 78% 

Class 0 
(partially 
dried) 

92% 75% 83% 78% 

The occurrence of inaccurate categorizations in 

grape drying processes predominantly arises when 

grapes were only partially dried, yet erroneously 

identified as fully dried grapes. The scenario of the 

minority instance arises when the grapes underwent 

complete dehydration, yet were erroneously classified 

as partially dried grapes. 

Historically, the categorization of dehydrated 

grape grades has been conducted by specialists. This 

study presents an alternative approach that utilizes a 

machine vision-based Artificial Neural Network (ANN) 

algorithm. The primary advantage of an artificial neural 

network (ANN) based system is a significant reduction 

in the burden of specialists. Nevertheless, there is a 

limitation in evaluating the quality of raisins due to the 

absence of grape moisture content analysis in the 

current model, which is an essential aspect in 

determining raisin quality. Subsequent improvements 

to the model will strive to address this constraint. 

The process is completed by the machine 

automatically turning off when the system recognizes 

that all grapes have completely dried out and become 

raisins (100% dry). Nevertheless, this setpoint has a 

disadvantage: it has the potential to cause certain 

samples to become excessively dry. To alleviate this 

issue, the setpoint should be established by 

considering the grapes that have fully dried out in the 

majority. Therefore, additional tests are required to 

observe and determine the most favorable value for the 

ultimate dehydration time under real-life 

circumstances. 

In addition, the primary objective of this 

experiment was to investigate the feasibility of 

employing a Raspberry Pi, a cost-effective 

microcontroller, for classification purposes, as opposed 

to the conventional utilization of personal computers 

(PCs) or laptops, which was prevalent in most research 

endeavors. The cost of a Raspberry Pi, when 

purchased with a camera module, was approximately 

$100. Therefore, it was highly affordable to many small-

scale manufacturing businesses. To compromise, the 

average accuracy of the model was 78%. At this 

juncture, the acceptability of the situation could be 

acknowledged; yet, when examining the precision of 

class 1, it is observed to be merely 60%. Therefore, it is 

imperative to enhance the accuracy by using more 

grape attributes, such as the L*a*b* color model. In 

addition, the inclusion of additional data significantly 

contributes to the model's ability to attain favorable 

outcomes. Another aspect to consider is the potential 

for enhancing accuracy through the utilization of more 

sophisticated artificial neural network (ANN) methods, 

such as the deep neural network (DNN) algorithm. 

Moreover, deep neural networks (DNNs) can yield 

more accurate outcomes; nonetheless, they still 

encounter a challenge while processing large volumes 

of data. In subsequent research endeavors, the 

proposed model will evaluate the algorithm's 

performance in real-world scenarios, specifically 

involving the placement of intact grapes within the tray. 

The ultimate objective of the future work is to achieve a 

fully automated system. 

 

 
CONCLUSION 

 

In this research, a machine vision system was 

employed to monitor dried grapes during the drying 

process. The ANN algorithm is applied to create the 

model for classifying grapes' class labels as completely 

dried and partially dried grapes. The model's input  
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parameters include color (RGB color) and shape 

(roundness and shrinkage). The model's performance 

in classification shows a satisfactory result with an 

accuracy of 78%. When the system determines that all 

grapes are raisins, the AC power of the dehydration 

machine will automatically turn off. Then, the proposed 

system is aimed at reducing over-dried products and 

the workload of the operator. 
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NAUČNI RAD 

KORIŠĆENJE OBRADE SLIKE I VEŠTAČKIH 
NEURALNIH MREŽA ZA SORTIRANJE 
SUŠENOG GROŽĐA TOKOM PROIZVODNJE 

 
Ovaj rad uvodi tehniku obrade slike koja koristi veštačku neuronsku mrežu (ANN) za 

razvoj prediktivnog modela za klasifikaciju suvog grožđa tokom procesa sušenja. 

Primarni cilj ovog modela je da se ublaži teret koji se stavlja na operatera i minimizira 

pojavu previše osušenih grozdova. Ova studija podrazumeva razvoj modela koji se 

konstruiše korišćenjem karakteristika boje i oblika grožđa. Postoje dve različite kategorije 

za grožđe: potpuno isušeno grožđe, koje se obično naziva suvo grožđe, i grožđe koje je 

podvrgnuto delimičnom sušenju. Obrada slike se koristi za prikupljanje i posmatranje pet 

značajnih karakteristika grožđa tokom procesa sušenja. Nalazi ukazuju na značajno 

smanjenje nivoa crvene, zelene i plave boje (RGB) tokom početnog perioda sušenja od 

15 sati. Prediktivni model izdvaja svojstva, kao što su RGB boja, zaobljenost i skupljanje 

iz slike, dok se grožđe podvrgava procesu sušenja. Model veštačke neuronske mreže 

(ANN) postigao je nivo tačnosti od 78%. U ovom radu, aparat za dehidraciju će 

automatski prestati sa radom kad god se planira da celokupno grožđe na tacni preobrazi 

u suvo grožđe. 

Ključne reči: obrada slike; proces sušenja grožđa; veštačka neuronska mreža; 
ugrađeni sistemi. 
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SUPPRESSING PRE-HYDROLYSIS IN 
TiO2 MANUFACTURING: DESIGN 
OPTIMIZATION OF AN INDIRECT 
HEATING HYDROLYSIS SYSTEM 

 
Article Highlights  

• An indirect heating system was developed for inhibiting TiO2 pre-hydrolysis 

• Multiphase heat transfer CFD simulation with the immersed solid method was 
conducted 

• The optimized indirect heating system has been stably operated in the real field 

• The uniformity of TiO2 particles was confirmed by the Settling Value test and TEM 

analysis 

 
Abstract  

The particle size of 𝑇𝑖𝑂2 is critically influenced by the operation of the 

hydrolysis process. Failure to achieve uniform particle size during hydrolysis 

can have significant repercussions on subsequent processes, such as 

washing, reduction, and bleaching procedures, ultimately leading to the 

production of unusable final products. The primary goal of this study is to 

suppress pre-hydrolysis, which is a factor that impedes the formation of 

uniform particles during the hydrolysis procedure. To overcome this issue, 

the researchers designed an indirect heating system to mitigate the pre-

hydrolysis phenomenon. For designing an indirect heating system, 

multiphase Computational Fluid Dynamics (CFD) simulations were 

performed. The proposed optimized design was then implemented and 

tested in the actual field. The success of the field test was evaluated through 

settling value tests conducted on the hydrolyzed solution, and the uniformity 

of particle size was analyzed using Transmission Electron Microscopy 

(TEM) images, Scanning Electron Microscope (SEM), and Microtrac. The 

findings of this study demonstrate the effective application of the developed 

multiphase CFD simulation in enhancing the hydrolysis process for the 

production of anatase titanium dioxide particles. This successful integration 

demonstrates the application of mechanical engineering techniques in the 

field of chemical engineering. 

Keywords: multiphase; conjugate CFD simulation; precipitation; particle 
size distribution; TiO2 manufacturing; indirect heating hydrolysis. 

 
 

Titanium dioxide is a widely used white pigment in 

industries such as coatings, paints, paper, plastic, 

rubber, ceramics, and textiles. There are two main 
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structures of titanium dioxide particles: rutile and 

anatase, depending on the production method [1,2]. 

This paper will specifically focus on the sulfate process, 

which involves the decomposition of titanium-

containing raw materials through sulfuric acid and 

subsequent hydrolysis of titanium sulfate [3]. The 

chemical reactions integral to the sulfate process are 

illustrated in Eq.(1) below. 

( )

FeTiO H SO FeSO TiOSO H O

TiOSO n H O TiO nH O H SO

TiO H O TiO nH O

3 2 4 4 4 2

4 2 2 2 2 4

2 2 2 2

2 2

1

+ → + +

+ + →  +

 → +

 (1)
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To achieve high-quality white pigment production, 

precise and stable control of the hydrolysis process is 

essential. Many TiO2 manufacturing industries have 

undertaken efforts to optimize this process [4—8]. The 

typical hydrolysis procedure for TiO2 manufacturing 

involves introducing high-temperature steam into a 

TiSO4 solution using bottom-mounted steam nozzles. 

After reaching a specific temperature (96 °C), external 

seeds are added to initiate hydrolysis [9—11]. However, 

the initial heating phase can lead to temperatures 

exceeding 110 °C at the nozzle location, potentially 

causing pre-hydrolysis before seed introduction 

[12,13]. This pre-hydrolysis leads to the formation of 

particles smaller than 100 nm, which can clog filter cloth 

pores during washing. This phenomenon acts as a 

bottleneck that directly impacts the overall 

manufacturing capacity [14,15]. 

The most effective approach to prevent pre-

hydrolysis is to perform the first heating step using a 

water-free heat source [16]. Subsequently, the second 

and third heating steps, where seeds are present, 

should utilize conventional steam direct heating 

appropriately. To achieve this, a preheating tank with 

an indirect heating system using a heating coil is 

proposed for the first heating procedure and it should 

be positioned prior to the existing hydrolysis tank. 

The design of the indirect preheating tank 

requires multiphase CFD simulation to handle the two 

phases present: The TiSO4 solution filled inside the 

tank and the steam flowed into the heating coil. The 

simulation will help in identifying the appropriate shape 

of the heating coil, which can uniformly heat the solution 

to 96 °C within 20 minutes. 

However, conducting multiphase CFD 

simulations presents challenges in terms of computing 

power and time, especially when compared to single-

phase simulations. This complexity arises from 

considering multiple working fluids and boundary 

interfaces. In cases involving rotating fluid machinery 

within multiphase CFD simulations, the mesh must be 

regenerated at each time step to account for the 

interface between the rotating and stationary regions. 

This re-meshing process demands a considerable 

amount of additional computing power 

Therefore, many researchers have developed 

CFD methods to reduce computing time, such as the 

moving reference frame (MRF) [17,18], sliding mesh 

(SM) [19—21], overlapping grids [22,23], and so on. 

However, these methods often sacrifice accuracy for 

computational efficiency and are mainly used for 

steady-state simulations. In this study, since the time-

dependent temperature distribution and heat transfer 

are crucial, we aim to explore the Immersed Solid Mesh 

(ISM) technique along with these methods to reduce 

computational time while preserving accuracy [24—28] 

In traditional applications, the Immersed Solid Method 

(ISM) has primarily been utilized for tracking the 

trajectories of solid particles within a Discrete Element 

Method (DEM), where considerations of mass transfer 

or heat transfer are not included.  

However, this study aims to utilize the Immersed 

Solid Method (ISM) to conduct a multiphase simulation, 

which includes heat transfer between a fluid and gas 

through a heating coil solid body. By employing ISM, 

the computational domain can be extended to virtually 

model the solid structures surrounding the fluid, leading 

to enhanced accuracy in the analysis and reducing the 

necessity for frequent mesh generation and updates. 

By analyzing the heat distribution inside the tank and 

on the surface of the heating coil, this study aims to 

optimize the design of the heating coil for an indirect 

heating system. 

 
 
MULTI-PHASE CFD SIMULATION 

Governing equation 

The Navier-Stokes equation serves as the 

principal governing equation for general single-phase 

Computational Fluid Dynamics (CFD) applications, 

represented as Eq.(2). 
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In a typical multiphase CFD solver, when two 

different phases of fluids come into contact, force and 

mass exchange occur, leading to the formulation of 

equations like Eq.(3) and Eq.(4). 
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The meaning of αq is the Volume fraction of qth 

phase, and the momentum equation of qth phase can 

be written as the following Eq.(5) 
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where Rpq is interphase forces exchange, and �̇�𝑝𝑞𝑢𝑞 is 
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interphase mass exchange. However, in this study, the 

heating coil inhibits mass exchange between two 

different phases and only allows heat exchange 

between them. As a result, terms related to 𝑅𝑝𝑞, �̇�𝑝𝑞𝑢𝑞 

become zero during the calculation process, and only 

heat transfer through volume calculations of different 

phases is considered. 

 
 
CFD PROCEDURE AND RESULTS 

Geometry and mesh generation 

The tank present on the site has dimensions of 

3.35m x 3.45m and features a 5° downward slope at the 

base to facilitate liquid drainage. Inside the tank, there 

are two-stage blades with a 45° pitch angle for smooth 

solution mixing, along with an indirect heating coil. The 

actual field geometry is illustrated in Fig. 1a and 

computational geometry is explained in Fig. 1b. 

Two different methods can be used for mesh 

generation: the conventional method of General Grid 

Interfacing (GGI), and a simpler method utilizing the 

Immersed Solid Method (ISM). These two types of 

mesh generations are explained in Fig. 1c. When 

generating the mesh using the immersed solid mesh 

(ISM) method, the total number of mesh elements was 

reduced by over 20% compared to using the GGI 

(General Grid Interface) method, while keeping the 

same growth rate and mesh setup values. 

 
Figure 1. Geometry of indirect heating system. 

 

Specifically, the GGI method resulted in 

approximately 8.8 million mesh elements, whereas the 

ISM approach yielded a mesh with 5.9 million elements. 

Comparing the Immersed Solid Method (ISM) with the 

GGI method, the ISM technique led to a remarkable 

25% reduction in computation time for a total simulation 

timestep of 20 minutes. The GGI method required 

72 hours, while the ISM method completed the 

simulation in 54 hours. Additionally, when assessing 

the average temperature of TiOSO4 the solution, both 

methods exhibited a temperature deviation of less than 

1 degree. Therefore, in this study, the Immersed Solid 

Method (ISM) approach was employed while 

maintaining the accuracy of CFD calculations. The 

temperature rise curves calculated using the GGI 

method and the immersed solid mesh are shown in 

Figure 1d. The curves indicate that there is little 

difference in the temperature rise, with the GGI method 

requiring 59 hours of computing time for a 20 minute 

real-time step, while the immersed solid mesh required 

41 hours. However, due to the mesh not being fine 

enough, the accurate capture of eddy movements near 

the blunt body was not achieved, resulting in slight 

differences in the temperature contour. 

Therefore, the simulation using the immersed 

solid mesh is a suitable method for scenarios like 

optimization processes where high accuracy is not 

essential, and many cases need to be computed in a 

short amount of time, similar to the DOE (Design of 
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Experiments) method. 

Boundary condition 

The tank is filled with TiOSO4 solution and high-

pressure steam at 5 bar and 185 °C is supplied through 

the heating coil. The steam outlet is set as an opening 

condition because it is not subjected to any external 

pressure and is open to atmospheric pressure. Table 1 

describes the properties of the working fluid. 

Table 1. Property of TiOSO4 and wet steam. 

Identification TiOSO4 Wet steam 

𝑚 (Molar mass) 159.92 g/mol 18.01528 kg/kmol 

ρ (Density) 1.5954 g/cm3 2.669 kg/m3 

c (Specific heat 

capacity) 

1070 J/kg.K 2.3289 kJ/kg.K 

η (Dynamic 

viscosity) 

0.001 kg/ms 0.000014 kg/ms 

κ (Thermal 

conductivity) 

0.6 W/m.K 0.003 W/m.K 

Initial condition 1 atm, 55 ℃ 5 bar, 185 ℃ 

The heat transfer process involves two distinct 

heat interfaces. The first interface encompasses the 

inner surface of the pipe through which steam is 

introduced, coming into direct contact with the steel 

material. The second heat interface is formed at the 

contact surface between the steel material and the 

TiOSO4 solution. This simulation specifically considers 

heat transfer exclusively across these interfaces. For 

the steel material, 10 mm thickness 100 A of 316 L 

stainless steel property was used for heat conductivity 

and thermal expansion coefficient. The Agitator, using 

the Immersed Solid Method, rotates clockwise at 

35 rpm, while the wall is subjected to a no-slip boundary 

wall condition. 

Simulation results 

To initiate the seed injection process, The TiOSO4 

the solution in the indirect heating tank should be 

heated up to a target temperature of 96 °C for 

20 minutes. Firstly, a performance evaluation of a 

single heating coil was carried out. The height of the 

coil was limited to 2000 mm from the bottom, taking into 

account the height of the liquid and the agitator blade. 

Figure 2 represents the temperature contour on the 

surface of the single heating coil and streamline at the 

side plane of the tank. It demonstrates that the 

temperature distribution on the heating coil surface 

varies according to the fluid flow. 

 

 
Figure 2. Temperature distribution on single heating coils surface. 
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This emphasizes the results of heat transfer 

between gas-solid-fluid, which fundamentally differs 

from conventional CFD simulations that involve setting 

a heat source on a typical wall surface. In addition, in 

the region where the agitator rotates, the fluid exhibits 

high turbulence kinetic energy, leading to vigorous heat 

exchange between the heating coil and the 𝑇𝑖𝑂𝑆𝑂4 

solution. As a result, the temperature on the surface of 

the heating coil facing the agitator appears to be lower 

compared to other areas. 

Table 2. The average temperature of different single heating 

coils. 

Coil rotation (times) 
Temperature of TiOSO4  

after 20 min (℃) 

6 77 
7 80 
8 83 
9 84 

As shown in Table 2, even though heat exchange 

was vigorous, it was not possible to reach the desired 

target temperature within the limited height and time 

using a single heating coil. When rotating the coil 10 

times, the gap between the heating coils becomes less 

than 10cm. Based on the experience and CFD 

simulation, the possibility of scale formation between 

the coils becomes very high in such cases. Therefore, 

the simulations were conducted excluding the results 

after 10 rotations. 

It is necessary to install the double heating coils 

to increase heating efficiency. In the design range, the 

heating coil was installed from 6 to 9 rotations, the 

same as in a single stage, and the heat change was 

observed for up to 20 minutes. 

Table 3. The average temperature of different double-heating 

coils. 

Coil rotation (times) 
Temperature of TiOSO4  

after 20 min (℃) 

6 92.375 
7 96.337 
8 101.415 
9 101.7 

As can be seen from Table 3 and Fig. 3, it is 

evident that there is a significant increase in 

temperature from the 6th rotation to the 8th rotation. 

However, from the eighth rotation, there is no more 

temperature rise.  

The inner heating coil surface facing the agitator 

exhibits a relatively lower heat distribution compared to 

other areas due to the presence of active heat transfer 

with the TiOSO4 solution. On the other hand, the outer 

heating coil positioned facing the wall has limited heat 

transfer to the solution, resulting in a relatively higher 

surface temperature distribution. Furthermore, as the 

number of coil revolutions increases, it can be observed 

that the outer portion of the heating coil fails to transfer 

heat effectively and still maintains a very high surface 

temperature. 

 
Figure 3. Temperature distribution on double heating coils surface and streamlining of TiOSO4 solution. 

 

Figure 4 illustrates the temperature distribution of 

the side plane, turbulence eddy dissipation, and the 

velocity in the v direction. In the case of 6-rotation, the 

TiOSO4 the solution flows smoothly between the 

heating coils, allowing for sufficient heat transfer. On 

the contrary, in the case of 9-rotation, the narrow 

spacing between the heating coils hinders the flow of 

the working fluid. 

The simulation results of this study demonstrated 

that the heating of the TiOSO4 the solution to 96 °C 

within the targeted 20 minutes is achieved by the 

utilization of an 8-rotation double heating coil. 
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Figure 4. Indirect heating coil installation and TiOSO4 solution. 

 

Lab scale test and results 

The results calculated by CFD were tested in a 

lab-scale pilot facility reduced to a 38:1 scale. The 

TiOSO₄ solution, heated without the addition of 

moisture, underwent hydrolysis, reduction, washing, 

calcination, and milling processes. The particle 

distribution was analyzed using SEM and microtrac 

techniques. Figure 5 shows the particle distribution as 

determined by SEM analysis and microtrac. Particles 

within the target specification of 300—400 nm account 

for 50.49% and 51.02% of the total, while particles 

within the nominal specification of 200–500 nm account 

for 84.88% and 85.25% of the total. 

Comparatively, the direct heating system with 

moisture injection showed a distribution of less than 

80% in the same experiment, indicating an 

improvement of over 5% with the indirect heating 

system. However, real field tests show a proportion 

exceeding 90%. The approximately 5% difference is 

attributed to the effects of boiling bubbles during 

heating, despite matching the Froude number to ensure 

experimental similarity. The presence of bubbles 

introduces various forces, such as virtual force, lift 

force, drag force, lubrication force, and turbulence 

dispersion force, which differ between a 5m diameter 

tank and a 20 cm tank. 

This discrepancy highlights an area for future 

research. Nonetheless, the consistent trend in particle 

distribution observed in the experiments confirms the 

effectiveness of the indirect heating method and its 

applicability to real field tests. 

Actual field test and results 

The 8-rotation double indirect heating coil with 

optimized agitator design, which demonstrated the 

most favorable heat diffusion based on the simulation 

results [8], was installed at the site. Subsequently, the 

settling value was examined to assess the outcomes.  

A settling value test, widely employed for 

assessing particle size uniformity, was conducted to 

determine whether the indirect heating system inhibits 

pre-hydrolysis. The settling value test involves diluting 

114 ml (190g/L TiO2) of the hydrolyzed solution with 

300ml of water. After cooling to 25 degrees, additional 

water is added to make up a 500 ml solution. After 

30 minutes, the suspension length is measured. A high 

settling value indicates a broader accumulation of 

smaller particles in the gaps between larger particles, 

resulting in a longer suspension length. On the 

contrary, a low settling value demonstrates that larger 

than 400 nm TiO2 particles are uniformly generated and 

there are significant presence of voids between 

particles. Figure 6 as shown below, presents the results 

of the settling value test, where the length of the clear 

portion in the supernatant is measured and recorded as 

the settling value. 

To conduct the settling value test, a hydrolyzed 

solution is required. The solution used for the test is 

obtained by completing the hydrolysis process with 

indirect heating for the primary heating and steam direct  
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Figure 5. Comparison of settling values between direct heating and indirect heating. 

 

heating for the secondary and tertiary heating stages. 

The hydrolyzed solution obtained without using an 

indirect heating system exhibited an average settling 

value of 65 mm/30 min. Moreover, there were instances 

where defective hydrolyzed solutions with a settling 

value of even 70 mm/30 min, rendering them unusable, 

were occasionally generated. On the other hand, with 

indirect heating, the settling values remained favorable, 

ranging from 55 mm/39 min to 45 mm/30 min. 

Table 4. Settling values of indirect heating system. 

Case 
Settling value  
(mm/30 min) 

Case 
Settling value 
 (mm/30 min) 

1 51 4 48 
2 55 5 45 
3 52 6 49 

The bottom side of Fig. 6 represents TEM 

(Transmission Electron Microscopy) images of the 

indirect heating process, zoomed in at 10000x 

magnifications. It can be observed that the particles in 

the size range of 0.1 micrometers significantly 

decreased compared to the single-blade agitator and 

direct heating methods. However, it is important to note 

that TEM images alone cannot provide a definitive 

judgment. TEM serves as supporting evidence, but for 

quantitative comparison and analysis, it is more 

appropriate to compare the settling values test. 

 

 

 

 
Figure 6. TEM analysis of indirect heating system. 
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CONCLUSION 

 
In this study, an indirect heating system for the 

efficient hydrolysis of TiOSO₄ solution was designed 

and optimized using multiphase computational fluid 

dynamics (CFD) simulations. The developed CFD 

solver is capable of handling gas-solid-fluid heat 

transfer in a multi-phase environment. The optimized 

design of the indirect heating system was further 

validated through real field tests, demonstrating its 

ability to generate TiO2 particles with a high level of 

uniformity.  

The results indicate that the indirect heating 

system effectively prevents pre-hydrolysis, addressing 

one of the major challenges faced in the hydrolysis 

process. This achievement is supported by advanced 

characterization techniques such as settling value test 

and, Transmission Electron Microscopy (TEM), 

Scanning Electron Microscope (SEM), and Microtrac. 

These results provide insights into the particle size 

distribution and settling behavior of the hydrolysis 

products. The completed hydrolyzed from the first-

stage heating procedure, achieved through the 

designed indirect heating system, successfully yields 

uniform particle sizes. Furthermore, this has enabled 

the overall stable operation of the hydrolysis process. 

Furthermore, the successful implementation of the 

immersed solid method in multiphase CFD has been 

demonstrated, particularly in the context of rotating 

machinery. This achievement highlights its broad 

potential applicability within various areas of the 

chemical engineering industry. 
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NAUČNI RAD 

SUZBIJANJE PRE-HIDROLIZE U PROIZVODNJI 
TiO2:OPTIMIZACIJA SISTEMA ZA INDIREKTNO 
ZAGREVANJE HIDROLIZATA 

 
Na veličinu čestica TiO2 kritično utiče vođenje procesa hidrolize. Neuspeh da se postigne 

ujednačena veličina čestica tokom hidrolize može imati značajne reperkusije na 

naknadne procese, kao što su postupci pranja, redukcije i beljenja, što na kraju dovodi 

do proizvodnje neupotrebljivih finalnih proizvoda. Primarni cilj ovog rada je suzbijanje 

pre-hidrolize, koja je faktor koji otežava formiranje uniformnih čestica tokom postupka 

hidrolize. Da bi prevazišli ovaj problem, istraživači su dizajnirali sistem indirektnog 

grejanja kako bi ublažili fenomen pre-hidrolize. Za projektovanje sistema indirektnog 

grejanja urađene su višefazne CFD simulacije. Predloženi optimizovani dizajn je zatim 

implementiran i testiran na stvarnom procesu. Uspeh procesnog testa je procenjen kroz 

testove vrednosti taloženja sprovedenih na hidrolizovanom rastvoru, a ujednačenost 

veličine čestica je analizirana korišćenjem slika transmisione elektronske mikroskopije, 

skenirajućeg elektronskog mikroskopa i Microtrac-a. Rezultati ovog rada pokazuju 

efikasnu primenu razvijene višefazne CFD simulacije u poboljšanju procesa hidrolize za 

proizvodnju čestica anataz titanijum dioksida. Ova uspešna integracija pokazuje primenu 

tehnika mašinstva u oblasti hemijskog inženjerstva. 

Ključne reči: multifazni, konjugatna CFD simulacija; precipitacija; raspodela 
veličine čestica; proizvodnja TiO2; hidroliza indirektnog zagrevanja. 
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INTEGRATED NEURAL NETWORK AND 
ASPEN PLUS MODEL FOR ENTRAINED 
FLOW GASIFICATION KINETICS 
INVESTIGATION 

 
Article Highlights  

• Sensitivity analysis of gasification kinetics of different feedstocks was performed in 

Aspen Plus 

• Process parameters and feedstock impact on efficiency and syngas composition are 
analyzed 

• Obtained results are used for ANN development and modeling with high accuracy 

• Process parameters optimization studies regarding syngas content are performed 

 
Abstract  

Entrained flow gasification is a well-established technology, however, the 

main obstacle in process design is the complex gasification mechanism, 

since numerous phenomena at extreme process conditions take place 

simultaneously. This study is focused on integrated thermodynamic and 

artificial neural network approach (ANN) for entrained flow gasification 

kinetics investigation. Data on 102 feedstock materials composition was 

used in the AspenPlus gasification simulation, where sensitivity analysis 

was performed for different equivalence ratios (0.1—0.7) and gasification 

temperature (1200—1500°C) values. For analyzed materials, an optimal 

equivalence ratio range exists (usually 0.3—0.4), maximizing gasification 

efficiency. The obtained results were used in ANN development for each 

output variable (syngas composition, efficiency, heating value, and carbon 

conversion). Matlab algorithm was used for the determination of the optimal 

number of neurons (1—20 range) in each ANN. High R2 values (>0.99) for all 

models suggested good agreement between simulated and predicted 

values. Genetic algorithm-based optimization studies for maximization of 

hydrogen content and cold gas efficiency result in mean ER values of 0.35 

and 0.41, respectively, at a temperature of 1200 °C. Yoon interpretation 

method was used for quantifying the relative impacts of each input variable 

on syngas content and gasification efficiency. The proposed approach 

represents a powerful tool that can facilitate the investigation of the 

entrained flow gasification and process design. 

Keywords: syngas; optimization; simulation; machine learning. 
 

Global energy production, despite an increase in 

renewable energy sources consumption, is still  
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dominated by fossil fuels. Approximately one-third of 

global electricity production in 2022 came from 

renewable energy sources, while their share in total 

energy consumption is even lower, approaching 20% 

[1,2]. Taking into account the non-renewable nature of 

fossil fuels and intensive greenhouse gas and pollutant 

emissions, the energy industry is expected to shift 

towards cleaner energy sources (solar, wind, hydro, 

geothermal, biomass, etc.) [3], which is recognized and 

controlled by global policies [4,5]. Thus, a serious effort 

is made to develop new and improve the existing 

energy conversion technologies. 
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Thermochemical conversion technologies consist 

of the conversion of carbonaceous feedstocks into 

liquid, solid, or gaseous products for further production 

of electricity, heat, chemicals, or fuels. Among the 

conventional thermochemical conversion technologies 

(combustion, gasification, and pyrolysis) [6], 

gasification offers benefits in terms of high conversion 

efficiency [7], achievable carbon capture and cleanup 

of produced gas (syngas) [8], as well as polygenerative 

potential due to specific syngas composition [9]. The 

process consists of partial oxidation of carbon in the 

fuel in the presence of a gasifying agent, such as 

oxygen, air, air-oxygen mixture, steam, steam-oxygen 

mixture, or carbon dioxide. Produced syngas consist 

mainly of carbon monoxide, hydrogen, methane, 

carbon dioxide, and water. The solid residue consists 

of ash and an unconverted organic fraction of the fuel 

[10,11]. Overall reacting system is endothermic, where 

necessary energy can be provided by partial oxidation 

(auto-thermal gasification) or by external supply of 

energy (allo-thermal gasification). Considering the 

auto-thermal system, gasification can be seen as a 

sequence of three stages: drying, decomposition 

(devolatilization), and gasification. Overall process 

output depends on several factors, including operating 

conditions (temperature and pressure), amount and 

type of gasifying agent, feedstock composition, and 

gasification technology [11,12].  

Several gasification technologies have been 

developed in recent years, which differ in operating 

conditions, feedstock material state, capacity, 

efficiency, and scale-up potential. Within the currently 

available gasification technologies, such as fixed bed 

and fluidized bed, entrained flow gasifiers constitute an 

interesting option owing to their commercial large-scale 

availability (technological readiness index of around  

7—8), lower emissions, and their high efficiency for the 

production of syngas [13,14]. Complex construction 

and operation, problems with construction materials at 

high temperatures, as well as fuel specificity in terms of 

particle size, are compensated by high conversion 

efficiency, high capacity, good gas-solid contact and 

mixing, moderate heating value syngas, and great 

scale-up potential. Typical entrained flow gasification 

(EFG) temperature is above ash melting point, typically 

in the range of 1200—1500 °C, while gasification 

pressure is usually above 25 bar [13,15,16].  

To develop and design gasification processes, a 

detailed investigation of process kinetics must be done, 

which helps determine the impact of operating 

conditions and feedstock material composition on outlet 

parameters, i.e., carbon conversion, syngas yield, and 

syngas composition. Thus, several different 

gasification models have been developed, which can 

be divided into kinetic rate models, thermodynamic 

equilibrium models, and neural network models [15]. 

Kinetic models provide essential information on kinetic 

mechanisms to describe the conversion during 

biomass gasification. Several studies that include 

kinetic models have been made, taking into account 

gasification reactions, heat and mass transfer, and fluid 

dynamics in EFG [17—24]. Thermodynamic equilibrium 

models are independent of gasifier design and may be 

more suitable for process studies on the influence of the 

most important process parameters. Additionally, this 

model requires fewer details of the system in hand. 

Thus, stoichiometric and non-stoichiometric equilibrium 

models have extensively been used for gasification 

purposes [25—29], especially in the domain of EFG, 

since the system approaches thermodynamic 

equilibrium at higher temperatures [15,30]. 

Furthermore, this approach is often implemented in 

Aspen Plus simulation software, which has become a 

standard procedure for the simulation and investigation 

of the gasification process. The software enables 

equilibrium calculations through Gibbs free energy 

minimization [30]. Artificial neural networks (ANN) have 

recently been successfully used in various areas of 

chemical engineering research. The concept of ANN 

allows for black-box modeling of large amounts of data, 

which can be useful in phenomenologically complex 

processes, such as EFG and gasification in general. 

Therefore, several types of research using ANN have 

been conducted to evaluate the performance of various 

gasification systems [31], optimize a given gasification 

process for hydrogen production [32], model biomass 

gasification in fluidized bed gasifiers [33] and fixed bed 

downdraft gasifiers [34], predict biomass gasification 

process parameters [35] and develop a comprehensive 

gasification model, taking into account wide range of 

inlet and outlet parameters [36]. Also, some studies 

have developed an integrated thermodynamic 

equilibrium and ANN approach, which uses equilibrium 

calculation results as ANN input data, while a single 

output variable is considered, mainly syngas heating 

value [37] and net energy output [38].  

By using simulation software like Aspen Plus, a 

thermodynamic equilibrium approach can be applied 

for the gasification of different feedstock materials at 

different operating conditions. Thus, obtained data on 

syngas composition can be used for the development 

of ANN, which will take into account feedstock 

composition, gasifying agent type, and flowrate, as well 

as operating conditions, and provide outputs in the form 

of syngas composition, gasification efficiency, etc. This 

approach can be beneficial on multiple levels, since 

only obtained ANN models are necessary for the 

evaluation of gasification performance, thus providing a 

tool for engineers for preliminary assessment of 

potential plant efficiency, gasification operation 
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feasibility, and necessary operating conditions. Also, 

gasification kinetics for a given material can be 

assessed without the use of a process simulator, while 

a comparative analysis of the behavior of different 

feedstock materials can be performed.  

It is worth mentioning that there is ongoing 

research and development in the field of gasification, 

and new and innovative technologies are emerging that 

could potentially surpass EFG in terms of efficiency and 

cost-effectiveness [39—41]. Nonetheless, EFG remains 

one of the most promising and widely used gasification 

technologies at present. Therefore, the goal of this 

research is to investigate in detail the kinetics of the 

EFG process via an integrated ANN and 

thermodynamic equilibrium approach. To obtain 

representative data on EFG, numerous different 

feedstock materials have been investigated, whose 

composition is taken from the literature and used as an 

input in Aspen Plus gasification simulation. Typical 

oxyfuel gasification process flowsheet configuration 

was used, while sensitivity analysis was performed for 

all samples, with equivalence ratio and gasification 

temperature as parameters to be varied. Obtained 

results are used as input data for ANN development 

using a Matlab algorithm for network topology 

optimization. Obtained models for the prediction of 

output variables (syngas composition, cold gas 

efficiency, carbon conversion, and syngas LHV) are 

further used for developing the objective function for 

optimization via the genetic algorithm method. The 

objective function uses equivalence ratio and 

temperature as decision variables and parameters of 

interest as target variables, thus allowing for quick 

determination of optimal process parameters for a 

given feedstock material. 

 
 
MATERIALS AND METHODS 

Feedstock material data 

To develop a comprehensive gasification model, 

a wide range of input parameters is necessary. Since 

gasification is suitable for a relatively broad spectrum of 

raw materials, data on various feedstock material types’ 

composition is obtained from the literature. The general 

idea is to obtain data on proximate and ultimate 

analysis for materials of different origins and heating 

values, providing the necessary range of individual 

component composition. Data on proximate and 

ultimate analysis is obtained for 40 municipal solid 

waste (MSW) and refuse-derived fuel (RDF) samples, 

39 biomass samples, 10 coal samples, and 13 biomass 

briquettes samples. Complete input data is given in 

Supplementary material, Table S1. Since further 

calculations require the data on materials' lower 

heating value (LHV), for instances where only a higher 

heating value (HHV) is given, necessary conversion is 

made according to Eq. (1) [42]: 

MJ
LHV HHV H Moisture

kg
(9 ) 2.44  

 
= −  +   

 

  (1) 

where H and Moisture stand for hydrogen and moisture 

content, respectively 

Process simulation and sensitivity analysis 

Gasification process simulation is performed in 

Aspen Plus software. Raw material composition data is 

used in the definition of nonconventional components, 

with HCOALGEN and DCOALIGT models being used 

for enthalpy and density calculations. Peng-Robinson 

equation of state was used as a thermodynamic model. 

Defined components consist of nonconventional 

components (raw material and ash), decomposition 

products (C, H2, N2, H2O, S, Cl2, O2), and possible 

syngas components (CH4, CO, CO2, NO, NH3, HCl, 

H2S, C2H6). A typical gasification process flowsheet 

(Figure 1) is developed, where feedstock material 

(FEEDSTOCK) first enters the decomposition 

(DECOMP - Ryield) reactor, where drying and 

devolatilization processes take place at 500 °C and 

gasification pressure of 25 bar. Then, the mixture 

enters the gasification reactor (GASIFIER - RGibbs), 

along with pure oxygen (O2-GASIF), which enters the 

reactor at 200 °C and 25 bar. In the gasifier, restricted 

chemical equilibrium calculations take place at the 

selected gasification temperature, while the heat 

required for decomposition (Q) is provided from this 

reactor. Obtained products are sent to a separator 

block (SEPARATOR), where unconverted carbon and 

ash are removed (SLAG), thus simulating the formation 

of slag in the gasifier. 

 
Figure 1. Aspen Plus gasification process flowsheet. 

For the determination of the necessary oxygen 

flow rate for each simulation, equivalence ratio (ER) 

was used, while all calculations were performed in a 

Calculator block. The equivalence ratio for oxyfuel 

gasification is defined as: 

st

O F
ER

O F

( / )

( / )
=     (2) 

where O/F stands for the actual ratio of oxygen to fuel, 
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while (𝑂/𝐹)𝑠𝑡 stands for the stoichiometric ratio. 

Sensitivity analysis was performed for every raw 

material, with ER and gasification temperature being 

the parameters to be varied. Temperature was varied 

in the range of 1200 °C to 1500 °C, with 15 °C 

increments, while ER was varied in the range of 0.1 to 

0.7, with 0.03 increments. A defined flowsheet 

configuration is set for the autothermal gasification 

regime; if the gasification reactor provides insufficient 

heat for decomposition (for example, when ER is too 

low, or when the material has a low heating value), the 

error is reported, and these results were not taken into 

consideration. Simulation results include the content of 

main syngas components (CO, H2, CO2, CH4, and 

H2O), while obtained data is used for the calculation of 

syngas LHV, carbon conversion, and cold gas 

efficiency (CGE). Carbon conversion and CGE are 

calculated from the following equations: 

c in c out

c in

m m
CONV

m

, ,

,

100(%)
−

=     (3) 

syngas syngas

f f

m LHV
CGE

m LHV
100(%)


= 


   (4) 

where mc,in and mc,out stand for carbon flow rate at 

gasifier inlet and outlet, msyngas and mf stand for syngas 

and feedstock mass flowrate, and LHVsyngas and LHVf 

stand for syngas and feedstock LHV, respectively. 

Artificial neural network modeling and optimization 

Sensitivity analysis results are used as input data 

for the development of ANN for prediction of output 

parameters. MatLab’s Neural Network Toolbox was 

used for the design of the neural network structure. A 

standard structure with one hidden layer was used, with 

a linear transfer function at the output layer and a 

tangent sigmoid function at the hidden layer. An 

algorithm was developed for the determination of the 

most suitable number of neurons in a hidden layer. The 

number of hidden neurons varied from 1 to 20, and the 

training process of each network was run 10 times with 

random initial values of weights and biases. The best 

topology was determined according to the coefficient of 

determination (R2), Mean squared error (MSE), and 

mean absolute percentage error (MAPE) values.   

Bayesian regularization backpropagation algorithm 

was used for network training, where 60% of the data 

was used as training data, 20% as validation data, and 

20% as test data. Each network consists of multiple 

inputs (ultimate analysis of feedstock material, moisture 

content, ER, and temperature) and singular output 

(syngas content of a selected component (CH4, CO2, 

CO, H2, H2O), syngas LHV, CGE or carbon 

conversion). Hence, 8 independent ANNs were 

developed. 

Obtained functions are later used for process 

optimization for a given condition using a genetic 

algorithm function. As a result of the optimization 

procedure for a given feedstock material composition, 

the algorithm returns values for ER and gasification 

temperature. Therefore, the algorithm can be used for 

various problems, for example, in the maximization or 

minimization of specific component content in syngas, 

in adjusting of components ratio in syngas, in 

maximization of CGE, syngas heating value, or carbon 

conversion. 

 
 
RESULTS AND DISCUSSION 

Characteristics of investigated feedstock materials 

As stated previously, materials of different origins 

were used in this study, to cover a wide range of 

elemental components compositions. It should be 

mentioned that some of the materials were completely 

unsuitable for the gasification process since the 

simulation reported errors for every combination of ER 

and temperature in sensitivity analysis. This is mainly 

due to high moisture content and low LHV value, which 

is typical for some MSW and biomass samples. The 

general characteristics of feedstock material which 

were suitable for gasification simulation are shown in 

Figure 2. It should be noted that the box plot for the 

chlorine content was not displayed due to its low 

content in all materials. Also, outliers in LHV, carbon, 

and sulfur content data correspond to coal samples 

used in this study. 

 
Figure 2. Box-plot representation of feedstock materials 

composition and LHV taken from literature; db stands for dry-

basis composition. 

Impact of operating conditions on entrained flow 
gasification 

To analyze and discuss the relative impact of 

main operating conditions, ER, and temperature on the  
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oxyfuel EFG process, the results of a sensitivity study 

on a randomly selected feedstock material will be 

displayed. Surface plots for selected output 

parameters, mainly syngas composition and overall 

gasification parameters, are displayed in Figures 3 and 

4. According to plots displayed in Figure 3, a nonlinear 

correlation between syngas composition and operating 

conditions can be observed. A crucial observation is 

that there is a distinctive range of operating parameter 

values for which H2 and CO content are at maximum. 

 

 
Figure 3. Dry-basis: (a) H2 content, (b) CH4 content, (c) CO content, (d) CO2 content in syngas as a function of ER and gasification 

temperature. 

 

Hydrogen content reaches maximum values in 

the ER range of 0.33—0.4 (Figure 3a), while lower 

temperatures favor hydrogen content increase. 

Maximum CO content is obtained in a similar ER range 

(Figure 3c), while a further increase of ER value slightly 

decreases CO content, with similar conclusions about 

temperature influence to be made. It can be assumed 

that the dominant reactions in the selected operating 

conditions range are partial oxidation and water-gas 

reactions. Methane content is significant at lower ER 

values (Figure 3b), where methanation and 

hydrogasification reactions are dominant. Methane and 

CO2 content decrease with an increase of ER (Figures 

3b and 3d), with a sharp decrease being in line with the 

area of maximum H2/CO values. 

Overall gasification efficiency is strongly 

dependent on the content of main syngas components, 

H2 and CO, due to their high heating values. Cold gas 

efficiency increases with an increase in ER, with 

maximum CGE values being in the ER range of  

0.33—0.4 and lower temperature area (Figure 4b). 

Complete carbon conversion is obtained after the 0.35 

ER threshold, for all temperatures (Figure 4c). In 

general, higher gasification temperatures lower the 

conversion and CGE, due to the increase of necessary 

mixture sensible heat. It could be noted that the optimal 

operating conditions ensure complete carbon 

conversion with minimal consumption of gasifying 

agents. Syngas LHV follows a similar pattern, with the 

main difference being a significant decrease in high ER 

area (Figure 4a). However, higher ER results in higher 

overall gas yield, which explains the slight decrease in 

CGE values (Eq. (4) and Figure 4b). 

Gasification kinetics in general is complex since 

the process takes place via a series of elementary 

reactions. However, it is stated in the literature that few 

global reactions, including only key components and 

interproducts, can be used for modeling purposes. 

Those reactions are given in Table 1 [43]. 

Table 1. Main gasification reactions. 

Stoichiometry Name 

Char combustion  
C+1/2O2→CO Partial combustion 
C+O2→CO2 Complete combustion 
Char gasification  
C+CO2→2CO Boudouard reaction 
C+H2O→CO+H2 Steam gasification 
C+2H2→CH4 H2 gasification 
Homogenous  
CO+1/2O2→CO2 CO oxidation 
H2+1/2O2→H2O H2 oxidation 
CH4+2O2→CO2+2H2O CH4 oxidation 
CO+H2O→CO2+H2 Water-gas shift 

Simulation results indicate that high hydrogen 

content corresponds to low water content in syngas, 

which can be attributed to the water-gas shift reaction, 

as well as the steam gasification reaction, where 

carbon is gasified with water vapor. At the area of 

complete carbon conversion, carbon gasification and 

oxidation no longer take place, which also causes 

hydrogen not to form via steam gasification reaction.  
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Figure 4. Overall gasification parameters, (a) syngas LHV, (b) CGE, (c) carbon conversion as a function of ER and gasification temperature. 

 

Boudouard reaction is one of the most important 

reactions in the entire gasification mechanism, where 

carbon reacts with CO2 while forming CO. This explains 

the decrease of CO content in the area of higher ER. At 

complete carbon conversion, the system stabilizes and 

no significant composition changes take place. Only 

homogenous reactions take place, primarily water-gas 

shift, while temperature and approximately equilibrium 

composition prohibit further reaction advancement. 

Also, it is important to highlight that methane and other 

hydrocarbons decompose at higher temperatures [13], 

which is why the obtained methane content is low. 

Artificial neural networks 

One neural network was developed for each 

output variable via the algorithm described in Materials 

and Methods. It should be noted that after initial runs, 

the number of input parameters decreases since 

chlorine and nitrogen contents in feedstock materials 

are very low and their impact on output variables should 

be negligible (due to the small quantity and inert nature 

of their gasification products). Likewise, ash is inert in 

the gasification process, thus, its impact is also 

neglected, resulting in 7 input parameters (carbon, 

hydrogen, oxygen, sulfur, and moisture contents, and 

ER and gasification temperature) for each output 

parameter. ANN performance and topology are shown 

in Table 2, while parity plots of some predicted and 

simulated values are shown in Figure 5. The remaining 

parity plots are given in Supplementary material, 

Figure S1. 

The number of hidden neurons increases the 

prediction accuracy since the optimal number of 

neurons was close to 20, while coefficients of 

determination values were above 0.99 for all instances. 

The impact of hidden neurons’ number on the 

coefficient of determination for each neural network is 

given in Supplementary material, Figures S2 and S3. 

High accuracy is also confirmed by low MSE and MAPE 

values. It should be noted that simulated values of 

certain values are close to zero for a wide range of 

operating parameters, thus resulting in a relatively high 

MAPE value, even though overall prediction accuracy 

is high. 

Table 2. Artificial neural network structure and prediction 

accuracy. 

Each output 
neuron 

Hidden 
neurons 

R2 
MAPE 

% 
MSE 

H2 19 0.9938 4.3858 4.7553·10-5 
CO 19 0.9988 13.6318 4.4521·10-5 
CH4 19 0.9987 60.3509 2.74339·10-6 
CO2 20 0.9968 16.8125 2.9776·10-5 
H2O 20 0.9984 7.0330 6.6187·10-5 
Syngas LHV 20 0.9997 0.4967 0.0035 
CGE 20 0.9989 1.3559 0.6355 
Carbon 
conversion 

20 0.9994 0.2970 0.1951 

To quantify the impact of input variables on 

syngas composition and overall gasification 

parameters, Yoon’s interpretation method was used 

[44]. Obtained results are displayed in Table 3. It can 

be noted that the equivalence ratio has a higher 

general impact on syngas composition and overall 

gasification efficiency than temperature, while carbon 

and moisture content impact the syngas composition 

the most. Results on the relative importance of ER and 

gasification temperature are in line with sensitivity 

analysis results displayed previously. 

Since developed neural network models show 
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Figure 5. Simulated and predicted data on (a) H2 content, (b) CO content, (c) syngas LHV, and (d) CGE, according to the developed 

ANN model. 

Table 3. The relative impact of input parameters on output parameters in the EFG process. 

 ER T, °C C H O Moisture 

H2 38.0±12.5 -4.3±0.5 13.6±2.8 1.6±6.4 6.3±9.1 -17.4±4.5 
CO 38.7±7.2 -3.8±0.6 11.5±4.2 3.0±7.8 4.0±3.8 -15.3±8.5 
CH4 -49.9±6.2 4.3±0.5 -12.4±1.6 5.7±2.7 -1.6±2.5 10.1±5.6 
CO2 -21.2±6.7 3.8±1.0 -7.5±7.8 -9.7±5.0 2.1±7.2 12.0±8.6 
H2O -36.1±8.4 4.1±0.6 -16.3±4.3 -2.8±4.9 -2.0±4.4 23.3±3.1 
Syngas LHV, MJ/kg 7.7±11.3 -3.6±0.9 4.5±4.4 20.0±5.0 -2.7±4.9 -14.3±6.6 
CGE, % 4.2±5.3 -0.6±0.8 9.4±5.5 -9.7±17.3 -3.9±11.8 -7.1±6.6 
Carbon conversion, 
% 

39.7±7.4 -1.7±0.6 -1.3±2.9 7.5±4.1 9.5±3.7 9.3±5.3 

 

good agreement between simulated and predicted 

data, they could be further used for optimization 

purposes. Two optimization problems were tested; 

obtaining the maximum hydrogen fraction in syngas 

and obtaining of maximum CGE for a given feedstock 

material. A genetic algorithm was used for optimization 

on each feedstock material, with ER and gasification 

temperature as output parameters. Parity plots on 

simulated (based on sensitivity analysis results) and 

predicted (optimization) hydrogen fraction and CGE are 

shown in Figure 6. 

 
Figure 6. Predicted and simulated; (a) H2 content and (b) CGE according to optimization procedure. 
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The obtained optimization results are in 

accordance with sensitivity analysis results. It should 

be noted that ER and temperature are in this case 

continuous variables, contrary to sensitivity analysis, 

which could lead to slight deviation of results. 

Temperatures corresponding to optimal operating 

conditions are close to the minimal gasification 

temperature of 1200 °C, while mean ER values are 0.35 

for hydrogen optimization and 0.41 for CGE 

optimization. 

In general, this approach contributes to a better 

understanding of EFG process kinetics, while 

developed ANN models can be used for quick 

prediction of gasification output parameters for a given 

feedstock. Obtained syngas composition can be further 

used to facilitate gasification-based process simulation 

since complex three-phase calculations are bypassed. 

Also, models can be used for process optimization i.e. 

obtaining the optimal operating conditions for a 

specified goal. 

 
 
CONCLUSION 

 
An integrated ANN and Aspen Plus gasification 

model was used for the investigation of entrained flow 

gasification kinetics. Various feedstock materials, 

mainly waste, RDF, coal, and biomass were used to 

obtain a wide range of input material elemental 

compositions. For each feedstock material, sensitivity 

analysis on EFG in Aspen Plus was performed, for 

different equivalence ratios and temperatures, and 

obtained results were used in ANN development. 

Single layer ANNs with an adjustable number of 

neurons were developed for every output variable 

(syngas components fractions, cold gas efficiency, 

syngas lower heating value, and carbon conversion), 

with high prediction accuracy (R2>0.99). All models 

consist of a high number of hidden neurons (19—20). 

Also, the general impact of ER and temperature, as well 

as feedstock material composition on output 

parameters was determined and discussed. The 

highest gasification efficiencies are obtained at lower 

temperatures, just above ash melting temperatures, 

and in a narrow range of ER, typically 0.35—0.45, 

depending on feedstock material composition. In this 

ER range, the highest H2 content and moderate CO 

content are obtained, resulting in the highest syngas 

heating value. Further increase of ER does not have a 

significant effect on syngas composition. Obtained 

models can be used for optimization problems, where 

two desired goals were successfully tested; 

determination of optimal combination of ER and 

temperature for maximization of syngas hydrogen 

content and cold gas efficiency. For investigated 

materials, mean optimal parameters are temperature of 

1200 °C and ER of 0.41 and 0.35 for cold gas efficiency 

and hydrogen content, respectively. This combined 

ANN and simulation approach allows for quick and 

accurate prediction of EFG efficiency and syngas 

composition, thus providing essential information for 

the design and development of gasification processes. 
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NAUČNI RAD 

INTEGRISANI MODEL ZASNOVAN NA 
NEURONSKIM MREŽAMA I ASPENPLUS 
SOFTVERU ZA ISPITIVANJE KINETIKE 
GASIFIKACIJE U ZAHVAĆENOM TOKU ČESTICA 

 
Gasifikacija u zahvaćenom toku čestica predstavlja razvijenu tehnologiju, međutim, 

glavna prepreka u projektovanju procesa je složen mehanizam gasifikacije, s obzirom da 

se više fenomena na ekstremnim procesnim uslovima odvija istovremeno. Ova studija je 

fokusirana na integrisani pristup pomoću termodinamike i veštačkih neuronskih mreža 

(ANN) za ispitivanje kinetike gasifikacije u zahvaćenom toku čestica. Podaci o 102 

sastava sirovina su korišteni za simulaciju gasifikacije u AspenPlus softveru, gde je 

analiza osetljivosti izvršena za različite ekvivalentne odnose (0.1—0.7) i gasifikacione 

temperature (1200—1500 °C). Za analizirane sirovine postoji optimalni opseg 

ekvivalentnog odnosa (obično 0.3—0.4), čime se maksimizije efikasnost gasifikacije. 

Dobijeni rezultati su korišteni za razvoj ANN za svaku izlaznu promenljivu (sastav 

singasa, efikasnost, toplotna moć i konverzija ugljenika). Matlab algoritam je korišten za 

određivanje optimalnog broja neurona (u opsegu od 1—20) za svaku ANN. Visoka 

vrednost R2 (>0.99) za sve modele ukazuje na dobro poklapanje između simuliranih i 

predviđenih vrednosti. Optimizacione studije bazirane na genetičkom algoritmu za 

maksimizaciju sadržaja vodonika i hladne efikasnosti gasa rezultuju srednjim ER 

vrednostima od 0.35 i 0.41, respektivno, na temperaturi od 1200 °C. Yoon-ova metoda 

interpretacije je korištena za kvantifikaciju relativnih uticaja svake ulazne promenljive na 

sadržaj singasa i efikasnost gasifikacije. Predloženi pristup predstavlja moćan alat koji 

može da ubrza istraživanje procesa gasifikacije u zahvaćenom toku čestica i 

projektovanje procesa. 

Ključne reči: singas; optimizacija; simulacija; mašinsko učenje. 


