@article{Nallathambi_Swathy_Sasi Kumar_2024, title={THE MAGNETOHYDRODYNAMIC WILLIAMSON FLUID FLOW ON AN EXTENDING SHEET WITH THERMOPHORESIS AND CHEMICAL REACTION: Original scientific paper}, volume={30}, url={https://www.ache-pub.org.rs/index.php/CICEQ/article/view/1227}, DOI={10.2298/CICEQ230928005N}, abstractNote={<p><em>This research investigates the steady, two-dimensional, incompressible flow of a pseudoplastic Williamson fluid subjected to a linearly stretched sheet. The study incorporates the effects of magnetic fields, chemical reactions, and thermophoresis on fluid behavior. By applying boundary layer techniques and similarity transformations, the governing equations are simplified for numerical analysis. The MATLAB bvp4c solver is employed to solve the reduced equations. The obtained results are visually represented and thoroughly discussed to comprehend the model’s physical characteristics. The investigation highlights the magnetic field’s influence, chemical reaction, and impact of thermophoresis</em><em> particle deposition </em><em>on the flow behavior of Williamson fluid over the extended sheet. Moreover, significant roles are found for chemical reactions and thermophoresis parameters in determining the fluid concentration near the boundary layer. It is observed that an increase in the chemical reactions and thermophoresis parameters results in a reduced thickness of the fluid concentration near the boundary layer. Notably, an increase in Schmidt value also diminished the thickness of the fluid concentration close to the boundary layer. The magnetohydrodynamic parameter significantly influences the fluid’s velocity and temperature near the surface. It has been noted that an increase in the magnetohydrodynamic parameter decreases the fluid’s velocity and increases the temperature near the surface. The impact of skin friction coefficient and Nusselt number and the impact of mass transfer coefficient on</em> <em>Williamson fluid will be discussed.</em> <em>The findings acquired are examined in relation to existing research and the correlation is provided as a table.</em></p>}, number={4}, journal={Chemical Industry & Chemical Engineering Quarterly}, author={Nallathambi, Golden Stepha and Swathy, Guvva and Sasi Kumar, Bharathi Gowri}, year={2024}, month={Jun.}, pages={325–333} }