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Article Highlights  

• Phase equilibria modeling is the key to the development and design of the separation 

process 

• New method based on ANFIS and PSO algorithm for estimating the solubility of solids in 
scCO2 

• The ANFISi approach is used to estimate the critical properties from the solubility data 

• A comparative study between the most used optimization algorithm where PSO gives 

the best results 

 
Abstract  

The subject of this work is to propose a new method based on the ANFIS 

system and PSO algorithm to conceive a model for estimating the solubility 

of solid drugs in supercritical CO2 (sc-CO2). The high nonlinear process was 

modeled by the neuro-fuzzy approach (NFS). The PSO algorithm was used 

for two purposes: replacing the standard backpropagation in training the 

NFS and optimizing the process. The validation strategy has been carried 

out using a linear regression analysis of the predicted versus experimental 

outputs. The ANFIS approach is compared to the ANN in terms of accuracy. 

Statistical analysis of the predictability of the optimized model trained with a 

PSO algorithm (ANFIS-PSO) shows a better  agreement with the reference 

data than the ANN method. Furthermore, the comparison in terms of the 

AARD deviation (%) between the predicted results, the results predicted by 

the density-based models, and a set of equations of state demonstrates that 

the ANFIS-PSO model correlates far better with the solubility of the solid 

drugs in scCO2. A control strategy was also developed for the first time in 

the field of phase equilibrium by using the neuro-fuzzy inverse approach 

(ANFISi) to estimate pure component properties from the solubility data 

without passing through the GCM methods. 

Keywords: modeling, ANFIS, artificial neural networks, critical properties, 
particle swarm optimization. 

 
 

Supercritical fluid technology is one of the most 

promising technologies to replace conventional 

techniques with plenty of advantages. Non-toxicity, low 

cost, availability, and the facility of separation are the 

major advantages of using this technology compared 

to the conventional one.  
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The knowledge with detail and accuracy of the 

equilibrium solubility is the key to the development and 

design of the separation process. With the various 

experimental data relative to the solubility of solid 

solutes in supercritical CO2 (scCO2) being published 

every year, the modeling of phase equilibria becomes of 

the primordial importance for the design and 

optimization issues, which leads to a gainful high 

selective process. 

Artificial intelligence (AI) has been widely used in 

recent years in many fields of chemical engineering [1-

3], renewable energy [4,5], and other areas [6-8] 

because of their good capacity of modeling and 

representing the different studied phenomena. Artificial 
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neural network (ANN) among all techniques becomes 

very popular in modeling different engineering 

problems because of their ability to extract very 

complex relationships from serious nonlinear 

problems. However, some drawbacks can be 

accompanied by the use of ANN (the learning process 

is slow, and their optimized parameters are difficult to 

analyze where ANN is considered as a black-box tool 

[9]). To surpass these disadvantages, ANN can be 

combined with other intelligent techniques called 

"hybrid systems.” In a previous work [10], a hybrid 

method based on the ANN and PSO algorithm was 

applied successfully to estimate the solubility of solid 

solutes in scCO2. The ANN inverse method was used 

to predict the critical condition properties without using 

group contribution methods. In the same work, the 

advantage of considering the particle swarm 

optimization algorithm (PSO) compared to other 

optimization techniques (genetic algorithm and ant 

colony optimization (ACO)) and the importance of the 

supercritical technology compared to other dissolution 

techniques (ionic liquids and hydrotropes) were 

highlighted and well discussed. 

In this paper, a new hybrid method based on the 

adaptive neuro-fuzzy inference system (ANFIS) in 

combination with a PSO algorithm is applied for the 

first time in the phase equilibrium area to evaluate the 

ability of this approach for estimating the solubility of 

solid drugs in scCO2, which includes: four 

methoxybenzoic acid isomers (naphthalene, 2-

methoxybenzoic acid, 3-methoxybenzoic acid, 4-

methoxybenzoic acid) [11], cholesterol [12], five 

phenol derivatives (p-nitrophenol, m-nitrophenol, 2,4 

dinitrophenol, 2,5 dinitrophenol, and picric acid) [13], 

eight pharmaceutical drugs (ibuprofen, 5-fluorouracil, 

azodicarbonamide, thymidine, 2-phenyl-4H-1,3-

benzoxazin-one, naproxen, taxol, and acetaminophen) 

[14], and penicillin [15]. Also, a control strategy is 

adopted and tested for the first time by using the 

inverse of the ANFIS method for estimating the critical 

properties of pure solid components. It is to mention 

that the reason for considering the ANFIS approach 

will be discussed in the next section. 

Neuro-fuzzy system 

Hybrid methods are widely used in many fields 

because of their high ability to adapt to various real-

world problems and the possibility of combining more 

techniques in the modeling and optimization process. 

ANFIS is an artificial intelligence method (AI) that 

combines artificial neural network networks and fuzzy 

interference systems (FIS). This method was first 

introduced by Jang [16]. 

As it was mentioned in the introduction section, 

ANN has two main problems: 

The learning process is slow. 

Analysis of their optimized parameters is complex. 

To correct the second problem, the fuzzy logic, 

which is good in explaining their behavior because fuzzy 

rules can be used successfully (where ANN is weak), 

but their capacity to acquire the knowledge is complex 

(where ANN is strong). This can make a neuro-fuzzy 

system a high predictive approach that takes advantage 

of both ANN and fuzzy logic. Also, the PSO algorithm, 

known as a good optimization tool, can surpass the first 

problem and enhance the learning ability of the ANFIS 

model.  

This work applies the ANFIS technique with PSO 

in training drugs to estimate solid drugs’ solubility in 

scCO2. The choice of these solids is justified by the 

availability of the experimental solubility data in the 

literature and their biological and pharmaceutical 

interest. 

Adaptive neuro-fuzzy inference system (ANFIS) 

The ANFIS is Jang’s hybrid neuro-fuzzy system 

developed in 1993 [R10]. ANFIS combines the 

fuzzification technique of fuzzy logic with the learning 

capability of ANN to facilitate the hybrid learning 

procedure [17]. The ANFIS architecture consists of five 

layers: fuzzified layer, artifact layer, standardized layer, 

de-fuzzified layer, and output layer. Each layer consists 

of a number of nodes that perform different operations 

according to the internal node function [18]. Based on a 

simple structure that considers two inputs and one 

output, the ANFIS with Takagi-Sugeno type is 

represented following Fig. 1. 

 

Figure 1. ANFIS architecture with two fuzzy rules. 

A common two fuzzy if–then rules of the first-order 

Sugeno’s type are as follows:  

Rule 1: if x1 = A1 and x2 = B1 then ƒ1(x1, x2) = a11x1 + a12x2 

+ b1 

Rule 2: if x2 = A2 and x2 = B2 then ƒ2(x1, x2) = a21x1 + a22x2 

+ b2 

Layer 1: the primary purpose of the f layer is to 

map input variables into the fuzzy sets [18]. To 

represent the linguistic terms, the Gaussian member- 
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ship function is usually used [19]: 
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where, ai1, bi1, ai2, and bi2 are the parameter set. 

Layer 2: the output of each node in this layer is the 

product of all the incoming signals: 

( ) ( )1 1 1 1 2A x B x =        (3) 

( ) ( )2 2 1 2 2A x B x =        (4) 

Layer 3: the label N in this layer indicates the 

normalization of the firing levels. The outputs of two 

neurons are the normalized firing level: 
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Layer 4: The output of this layer is the product of 

the normalized firing level and the individual rule 

output: 

( )1 1 1 1 1 1 2 1f p x q x r = + +      (7) 

( )2 2 2 2 1 2 2 2f p x q x r = + +      (8) 

Layer 5: The single node in this layer computes 

the overall system output as the sum of all incoming 

signals: 

1 1 2 2Y f f = +        (9) 

Solubility modeling using ANFIS-PSO  

The modeling of the phase behavior of CO2 (1)-

solid drugs (2) binaries is performed using the ANFIS 

approach with the PSO algorithm for the training. The 

ANFIS was built as five inputs (the equilibrium 

temperature, T, the equilibrium pressure, P) and three 

pure component properties to differentiate between the 

solubility of different solid drugs (critical temperature, 

Tc, critical pressure, Pc, and the acentric factor, ω) and 

the solubility of the solid drugs in the SCF phase (y2) 

as the output with five Gaussian membership functions 

for each input and five linear membership functions for 

the output. The first-order Sugeno fuzzy model was 

issued for generating the fuzzy rules. Figure 1 shows 

the ANFIS structure used in this study based on five 

lagged terms.  

The experimental data used for developing the 

ANFIS-PSO model is divided into two sets: the first set 

is considered for training (it contains 66% of total data), 

 

Figure 2. Direct and Inverse ANFIS structure for the prediction of 

the solubility of solid drugs. 

Table 1. Critical properties of solid components used in this work 
 

Components 
Tc  Pc  

ω Ref. 
(K) (MPa) 

Naphthalene 711.47a 3.897a 0.345 This 

work 

2-Methoxybenzoic 

acid 

808.95a 3.90a 0.764c This 

work 

3-Methoxybenzoic 

acid 

808.65a 3.89a 0.763c This 

work 

4-Methoxybenzoic 

acid 

808.35a 3.92a 0.762c This 

work 

Cholesterol 1151.55a 1.11a 0.967c This 

work 

Ibuprofen 749.7 2.33 0.819 [20] 

5-Fluorouracil  807.42 6.22 0.64 This 

work 

Azodicarbonamide 895.58 4.88 0.895 This 

work 

Thymidine 924.21 3.64 0.886 This 

work  

2-Phenyl-4H-1,3-

benzoxazin-one 

1009.69 3.64 0.746 This 

work 

Naproxen 807 2.45 0.904 [20] 

Taxol  1023.03 1.01 1.33 This 

work 

Acetaminophen 817.72 4.43 1.11 This 

work 

penicillin 902.78 2.355 1.325 [15] 

m-nitrophenol 896.35 5.53 0.662 This 

work 

p-nitrophenol 896.35 5.53 0.662 This 

work 

2,4-dinitrophenol 914.1 4.91 0.827 This 

work 

2,5-dinitrophenol 914.1 4.91 0.827 This 

work 

Picricacid 998.08 4.8 0.982 This 

work 
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and the second set is used for the test and validation 

(it has 34% of total data). This distribution is the most 

efficient for good ANFIS-PSO training. Table 1 shows 

the pure component properties of the solid 

components considered in this work. It is to mention 

that these properties for Naproxen and Ibuprofen are 

taken from the literature [20]. 

For solid drugs, where no parameters are 

available in the literature, the Lee-Kesler correlation 

was applied by using the PE software [21] to determine 

the Pitzer’s acentric factor of solutes. The critical 

temperature and critical pressure were estimated by 

the Nannoolal method [22] and the Gani group 

contribution method [23]. 

The calculation strategy is based on the variation 

of the training algorithms (considered a parameter to 

optimize with other parameters of the ANFIS model 

(the topology of the ANFIS model, membership 

function, the number of rules). The optimization of the 

ANFIS model parameters is performed by minimizing 

the objective function, which is an average absolute 

relative deviation (AARD %) defined as: 

exp

exp
1

100
(%)

calcn y y
OF AARD

N y

−
= =                 (10) 

 

RESULTS AND DISCUSSION 

 

The high nonlinearity is the characteristic of 

modeling the phase equilibrium. In this work, a 

comparative study was carried out between the new 

approach used in modeling solid solutes in scCO2, i.e., 

the ANFIS trained with the PSO algorithm and the 

artificial neural network (ANN) trained with the PSO 

algorithm (trainpso), the Levenberg-Marquardt 

algorithm (trainlm), and the basien radial algorithm 

(trainbr). 
 

 

Figure 3. Comparison in terms of AARD % between training 

algorithms for training ANFIS and ANN models. 
 

Figure 3 shows the superiority of the new 

approach in terms of the accuracy (lowest AARD) and 

the rapidity of the optimization process (lowest numbers 

of iterations) over the ANN model trained with the 

classical algorithms. Also, this study shows that the 

PSO training algorithm (trainpso) can be used for 

optimizing the ANFIS model with more accuracy than 

the other selected training algorithms (train-GA, trainlm, 

and trainbr). 

Based on the study mentioned above, the ANFIS-

PSO model has proved its ability to estimate the 

solubility of solids in scCO2 with more advantages than 

the ANN method. Table 2 gives a detailed comparison 

of the AARD% between the solubility calculated by the 

ANFIS-PSO model and those estimated by the different 

models reported in the literature to show the superiority 

of the new approach proposed for estimating solid 

solubility. The comparison shows that the ANFIS-PSO 

model predicts the solubility of solid components in 

scCO2 with more accuracy than those obtained by the 

EOS and density-based models (global AARD% = 

0.99). 

Figure 4 gives the solubility curves as a function of 

pressure for Taxol in scCO2. This graphical comparison 

allows concluding that the proposed model is suitable 

for modeling and representing the solid-scCO2 binary 

equilibrium. Also, this figure shows a good agreement 

between the experimental and the predicted solubility. 

 

 

Figure 4. Experimental solubility of taxol in scCO2 and that 

predicted by ANFIS-PSO model at various temperatures. 

 

 
Determination of importance of each input variable 

To evaluate the effect of each input variable on the 

output variable, the relative importance (Ij) was 

calculated using the Garson expression [24]. Figure 5 

gives the relative importance of five inputs where the 

equilibrium temperature and pressure substantially af-
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Table 2. Comparison of the AARD% of the predicted solubility of the solid drugs in scCO2 obtained by ANFIS-PSO model and the literature 
results by some EOS and density-based models 
 

SYSTEM 
AARD% 

ANFIS-PSO Chrastil VR-SAFT Bartle MT PR DVA SRK 

Naphthalene  1.25 NR NR NR NR 13.4 NR 14.8 

2-Methoxybenzoic 

acid 

0.97 8.20 NR NR NR NR NR NR 

3-Methoxybenzoic 

acid 

1.13 2.67 NR NR NR NR NR NR 

4-Methoxybenzoic 

acid  

1.11 6.97 NR NR NR NR NR NR 

Cholesterol 1.05 4.37 10.40 6.3 3.44 NR 4.54 NR 

Ibuprofen 1.23 6.72 8.80 8.9 3.99 NR 8.30 NR 

5-Fluorouracil  0.54 6.50 NR NR NR NR NR NR 

Azodicarbonamide 1.22 10.21 NR NR NR NR NR NR 

Thymidine 0.98 11.45 NR NR NR NR NR NR 

2-Phenyl-4H-1,3-

benzoxazin-one 

1.00 5.50 NR NR NR NR NR NR 

Naproxen 0.40 3.50 NR NR NR 12.1 NR 11.5 

Taxol 0.58 4.55 NR NR NR NR NR NR 

Acetaminophen 1.22 4.03 NR NR NR NR NR NR 

Penicillin 0.45 32.4 NR 22.9 NR NR 32.4 NR 

m-nitrophenol 1.40 9.42 NR NR NR NR NR NR 

p-nitrophenol 1.12 11.36 NR NR NR NR NR NR 

2,4-dinitrophenol 0.40 13.40 NR NR NR NR NR NR 

2,5-dinitrophenol 1.30 10.52 NR NR NR NR NR NR 

Picric acid 1.53 6.70 NR NR NR NR NR NR 

Total 0.99 8.80 9.60 12.7 3.71 12.75 15.08 13.15 

a NR= Not Reported. 

 
fect the solid solubility value with importance equal to 
31% and 28%, respectively 
 

 

Figure 5. Relative importance (%) of input variables on the value 

of the calculated solubility (y2). 

 

 
Optimal performance by mean of ANFISi 

According to the ANFIS model, it is possible to 

simulate the system performance when the input 

parameters are well known, and the model parameters 

are well optimized. The mathematical formula that 

connects the selected input variables to the output 

(solid solubility) in the optimized ANFIS-PSO model is 

given as follow: 
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where, p = 1.. .5, and j = 1...5. 

The INFISi approach is a method that can be used 

for estimating the input parameters from the output. 

Some of those parameters (critical properties) are not 

available in the literature, or there are no predictive 

methods to calculate them with acceptable accuracy. At 



146 

PRASAD et al.: CHEMICAL ROUTE FOR SYNTHESIS OF CITRIC ACID … Chem. Ind. Chem. Eng. Q. 28 (2) 141−150 (2022) 
 

 

 

this step, the optimized ANFIS model provides the 

nonlinear equation: 

( )

( )

( )
( )

2

2
1

2 2
1

2
1 1

exp
2

exp
2

p
j ij

k j ij

i i i
pki

j ij

i j ij

x c

Fun x y a x b
x c





=

=

= =

 −
 −
 
 = − +
 −
 −
 
 






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This equation has to be minimized at zero to get 

the optimal input parameters where the optimization of 

equation (13) is classified as a constrained 

multivariable nonlinear optimization problem. 

A set of the parameters are available for the inputs 

estimation process. When we introduce the value of the 

optimized ANFIS model, equilibrium temperature, and 

pressure, the other unknown parameters (critical 

temperature, critical pressure, and acentric factor) will 

be estimated using the optimization process. 

Following the same strategy applied in section (4), 

the ability of major optimization algorithms was tested 

in estimating the ANFISI model, where a comparative 

study was carried out among a set of optimization 

algorithms. 

The evaluation in terms of the AARD shows that 

the most efficient algorithm for the input parameters 

estimation is the PSO algorithm (Figure 6). 

 

 

Figure 6. Comparison in terms of AARD % between optimization 

algorithms (ACO, PSO, Ga and Nelder-Mead) for estimating 

input parameters using ANFISi. 

 

The comparison between the experimental and 

calculated values of the input parameters using ANFISi 

is performed in terms of AARDx: 

( )
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  (14) 

 

Estimation of critical properties by the interpolating 
method 

The ANFISI approach developed has reproduced 

the critical properties from the experimental data with 

good precision (the AARD (%) calculated are 0.85, 

0.75, and 0.60 for the critical temperature, critical 

pressure, and acentric factor, respectively). 

In this part, an extrapolating test is carried out to 

predict the acentric factor, critical temperature, and 

pressure from the experimental solubility data of the 

solid components found in the literature, which were not 

used in the development of the ANFIS model. Because 

this work has a point to evaluate the promising heuristic 

techniques' ability to represent the phase equilibria 

reliability, the ANFISi was compared to the ANNi 

method developed previously in terms of the average 

relative deviation (AARD%) for estimating the 

properties of the pure components. Figure 7 shows that 

the ANFISi can estimate both critical temperature and 

pressure far away than the ANNi. 

 

 

Figure 7. Comparison in terms of AARD between ANNi and 

ANFISi methods for estimation critical pressure of solid solutes. 

 

Using the PSO algorithm for the multivariable 

optimization process, the estimated values of the 

properties mentioned above for other classes of solids 

are shown in Table 3. This contains a comparison 

between the estimated properties with the new method 

and those calculated with the classical GCM method 

found in the literature [25-38]. Table 3 shows that the 

critical properties and the acentric factor calculated with 

the inverse ANFIS approach have the same orders of 

magnitude, which suggests a good extrapolating ability 

of the ANFISi. In addition, this approach is more 

advantageous than the group contribution methods, 

which needed the ebullition temperature and the 

structure of molecules for calculating such properties. 

The complicated process used with these methods may 
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add a factor of inaccuracy for the calculated critical 

properties [39]. 

Table 4 gives the AARD (%) values evaluated between 

the experimental data and the solubility calcu lated by 

the PR, SRK, and Pazuki equations of state using 

critical properties estimated in this work using the 

ANFISi and those calculated with the same equations 

of state reported in the literature. 

Table 3. Comparison between critical properties estimated by ANFISi approach and those found in literature 
 

Component 

Critical properties 

Ref. This work Literature 

Tc pc w Tc pc w 

Amiodarone 

hydrochloride 

989.6 10.50 0.41 1040.4 11.75 0.430 [25] 

Curcumin 432.5 22.20 1.35 419.9 22.50 1.551 [26] 

Anthraquinone 977.3 31.76 1.03 987.05 31.28 1.015 [27] 

1,4 bisethylamino 

(Anthraquinone) 

955.2 22.40 1.11 945.34 21.03 1.142 [27] 

1-Amino4-

hydroxyanthraquinone 

933.2 33.20 0.93 921.01 30.68 0.982 [27] 

1-Hydroxy 4-nitro 

anthraquinone 

919.7 28.5 1.01 913.95 27.74 1.046 [27] 

1-Amino 

anthraquinone 

901.2 30.33 0.85 928.10 31.42 0.853 [28] 

1-nitro anthraquinone 933.3 28.40 0.90 916.60 28.10 0.921 [28] 

Photochomicdye 785.1 24.20 0.89 - - - [29] 

Ibuprofen 763.5 22.90 0.89 749.70 23.30 0.819 [30] 

Ferulic acid 846.5 36.78 1.10 854.60 36.40 1.194 [31] 

Pyridin 4-amine 887.2 23.50 0.95 - - - [32] 

Fluvaxamine maleate 747.3 55.20 0.41 - - - [33] 

Flavanone 867.8 32.57 0.74 879.90 32.80 0.728 [34] 

Tangeritin 1034.2 26.89 0.98 1139.1 26.66 1.107 [34] 

Nobiletin 1178.4 25.94 1.09 1256 26.60 1.228 [34] 

6-Hydroxyflavanone 998.5 33.50 0.88 1062.5 35.40 0.914 [34] 

7-Hydroxyflavanone 1000.1 37.59 0.98 1074.2 37.81 0.952 [34] 

Protocatechuic 861.3 54.50 0.89 869.29 55.33 0.984 [35] 

Crysin 954.7 30.20 0.98 966.90 31.15 1.175 [35] 

Sinapic acid 904.5 27.80 0.91 927.62 28.06 0.973 [35] 

Menadione 624.4 45.88 0.69 639.58 46.53 0.623 [36] 

Dichlone 744.2 65.04 0.67 731.96 64.10 0.639 [36] 

Aprepitant 888.9 21.50 0.90 895.60 20.18 0.810 [37] 

Α-Tocopherol 888.5 45.30 0.525 - - - [37] 

dM2B 989.9 23.45 0.88 1144.11 24.46 1.015 [38] 

dM3P 995.4 21.9 1.10 1161.46 22.29 1.051 [38] 

 

Table 4. AARD evaluated between experimental solubility and that calculated with different models 
 

Component 
AARD (%)a AARD (%)b 

PR-EOS SRK-EOS Paz-EOS PR-EOS SRK-EOS Paz-EOS 

Amidarone 4.20 4.35 3.46 6.03 NR 8.88 
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Table 4. AARD evaluated between experimental solubility and that calculated with different models (Continued) 

 

Component 
AARD (%)a AARD (%)b 

PR-EOS SRK-EOS Paz-EOS PR-EOS SRK-EOS Paz-EOS 

Curcumin 7.33 7.87 5.34 50.5 NR NR 

Anthraquinone 5.25 5.97 3.67 7.60 8.40 NR 

1,4 bisethylelim 3.44 4.42 5.60 13.10 NR NR 

Photochomicdye 6.50 7.39 5.33 12.30 13.1 NR 

Ibuprofen 7.29 6.50 3.30 9.70 9.95 NR 

Ferulic acid 8.11 7.14 6.47 50.9 NR NR 

Pyridin 4-amine 5.55 4.67 4.95 NR NR NR 

Fluvaxamine maleate 5.30 5.02 6.11 63.43 NR NR 

Flavanone 0.99 1.33 1.56 1.90 NR NR 

Tangeritin 1.32 5.44 4.65 1.77 9.50 NR 

Nobiletin 1.20 1.01 3.45 0.98 NR NR 

6-Hydroxyflavanone 2.11 1.32 1.22 1.72 NR NR 

7-Hydroxyflavanone 3.77 2.25 3.34 1.14 NR NR 

Protocatechuic 5.70 5.93 2.12 5.60 NR NR 

Crysin 2.00 1.87 2.22 2.30 NR NR 

Sinapic acid 6.80 4.41 3.78 18.50 NR NR 

Menadione 4.33 3.89 5.42 8.27 NR NR 

Dichlone 4.20 4.43 6.43 9.03 NR NR 

Aprepitant 5.43 6.16 6.66 9.08 9.23 NR 

Α-Tocopherol 5.55 4.78 5.09 NR NR NR 

1-Amino4-

hydroxyanthraquinone 

6.73 7.88 5.44 13.60 NR NR 

1-Hydroxy4-nitro 

anthraquinone 

9.88 8.55 5.54 8.20 NR NR 

1-Amino 

anthraquinone 

3.45 4.44 6.12 10.50 NR NR 

1-nitro anthraquinone 3.23 3.87 4.44 13.10 NR NR 

dM2B 5.21 4.98 3.77 9.85 NR NR 

dM3P 3.85 3.44 2.43 7.33 NR NR 

a AARD (%) evaluated between experimental data and solubility calculated by PR, SRK and Pazuki equations of state using critical properties estimated in 
this work (ANFISi). b AARD (%) evaluated between experimental data and solubility calculated by PR, SRK and Pazuki equations of state reported in the 
literature. NR= Not Reported. 

 

CONCLUSION 
 

In this work, a new method that combines ANN 

and FIS has been used for developing a model to 

predict the solubility of solids in scCO2. The estimation 

results show that the ANFIS-PSO model can predict the 

solid solubility far better than the ANN-PSO model and 

the classical models with the AARD value equal to 

0.99 %. Also, the comparative study shows that the 

PSO algorithm was more advantageous in training, 

test, validation, and optimization problems. Therefore, 

the new approach shows the high predictive and 

interpolating abilities at temperatures where no 

experimental data was found in the literature. 

The second valuable contribution was developing 

an efficient method for reproducing the input 

parameters by an inverse FIS. The ANFISi was used 

first to reproduce the critical properties of the solids 

used for developing the ANFIS-PSO model to test the 

validity of this approach and then estimate the critical 

parameters for another set of solid drugs (extrapolation 

test). The results show that the ANFISi method can be 

a promising technique and a good alternative to the 

GCM method in estimating the critical properties of 

solid drugs. Also, ANFISi has facilitated the perfor- 



149 

PRASAD et al.: CHEMICAL ROUTE FOR SYNTHESIS OF CITRIC ACID … 

 

Chem. Ind. Chem. Eng. Q. 28 (2) 141−150 (2022) 
 

 

 

mance of estimating the solubility of the solid using the 

EOS equations compared to the experimental data. 

List of symbols 

 

AARD Average absolute relative deviation 

ACO Ant colony optimization 

AI Artificial intelligence 

ANN Artificial neural network 

ANNi Inverse artificial neural network 

ANFIS Adaptive neuro-fuzzy inference system 

ANFISi  

aij, bij Gaussian membership function parameters 

br Bazian regularization 

DVA Del Var Aguilera equation of state 

FIS Fuzzy interference system 

I Relative importance 

GA Genetic algorithm 

GCM Group contribution method 

lm LevenbergــMarquardt 

NM NelderــMead optimization algorithm 

T Equilibrium temperature (K) 

Tc Critical temperature (K) 

P Pressure (MPa)  

Pc Critical pressure (MPa) 

PE Phase equilibria 

PR PengــRobinson  

PSO Particle swarm optimization 

SRK SoaveــRedlichــKwong  

VR-SAFT Variable ranged statistical associating fluid 

theory 

α Firing strength 

β Normalized firing level 

ω Acentric factor 

y2 Solubility of solid drugs 

Superscripts   

calc Calculated property  

exp Experimental property 

o Output 

Subscripts  

2 Solute (solid) 

c critical property 

 
 
 

REFERENCES 

 
[1] J.C. Rojas-Thomas, M. Mora, S. Santos, Neural Comput. 

Appl.31 (2019) 2311–2327. 

[2] S.K. Ashan, M.A. Behnajady, N. Ziaeifar, Neural Comput. 
Appl. 29 (2018) 969–979. 

[3] M. Khayet, C. Cojocaru, Desalination 308 (2013) 102–110. 

[4] B. Gülçin, G. Sezin, Energy 123 (2017) 149-163. 

[5] M. Laidi, S. Hanini, Rezrazi A, M.R. Yaiche, A. Abdallah el 

Hadj, F. Chellali, Theor. Appl. Climatol. 128 (2017) 439-

451. 

[6] A. Abdallah El Hadj, C. Si-Moussa, S. Hanini, M. Laidi, 

Chem. Ind. Chem. Eng. Q. 19 (2013) 449-460. 

[7] M. Velibor, Chem. Ind. Chem. Eng. Q. 26 (2020)309−319. 

[8] Y. Jewajinda, P. Chongstitvatana, Neural Comput. Appl. 22 

(2013)1609–1626. 

[9] R. Fuller, H.J. Zimmermann, in Proceedings of 2nd 
International Workshop on Current Issues in Fuzzy 
Technologies, University of Trento, Trento, May 28-30 
(1993) 45-54. 

[10] A. Abdallah El Hadj, M. Laidi, C. Simoussa, S. Hanini, 
Neural Comput Appl. 28 (2017) 87–99. 

[11] J.W. Chen, F.N. Tsai, Fluid Phase. Equilib. 107 (1995) 189–

200. 

[12] F.E. Wubbolts, O.S.L. Bruinsma, G.M. Van Rosmalen, J. 
Supercrit. Fluids 32 (2004) 79–87. 

[13] M. Shammsipur, F. Reza, Y. Yamini, A.R. Ghiasvand, J. 

Supercrit. Fluids 23 (2002) 225–231. 

[14] S. David, L.A. Estévez, J.C. Pulido, J.E. Garcia, M. Carmen, 
J. Chem. Eng. Data 50 (2005) 1234–1241. 

[15] M.D. Gordillo, M.A. Blanco, A. Molero, E. Martinez de la 
Ossa, J. Supercrit. Fluids 15 (1999) 183–190. 

[16] J.S.R. Jang, IEEE Trans. Syst. Man. Cybern. 23 (1993) 

665–685. 

[17] A.R. Fallahpour, A.R. Moghassem, J. Eng. Fibers Fabr. 8 

(2013) 6–18. 

[18] R. Kamali, A.R. Binesh, Microfluid. Nanofluid. 14 (2013) 
575–581. 

[19] R.Babuska, Neuro-Fuzzy Methods for Modeling, In Recent 

Advances in Intelligent Paradigms and Applications, A. 

Abraham, L.C. Jain, J. Kacprzyk, Springer-Verlag, 

Heidelberg (2002), pp 161-186. 

[20] P. Coimbra, C.M. Duarte, H.C. de Sousa, Fluid Phase 

Equilib. 239 (2006) 188-199. 

[21] O. Pfohl, S. Petkov, G. Brunner, High-pressure fluid-

phase equilibria containing supercritical fluids, In 8th 

International Conference on properties and Phase 

Equilibria for Product and Process Design, 

Noordwijkerhout, Netherlands, April 26-May (1998). 

[22] Y. Nannoolal, J. Rarey, D. Ramjugernath, Fluid Phase 

Equilib. 269 (2008) 117-133. 

[23] J. Marrero, R. Gani, Fluid Phase Equilib. (183-184) (2001) 

183-208. 

[24] G.D. Garson, Interpreting Neural Network Connections 

weights, Al Expert: Miller Freeman, Inc. San Francisco 

(1991), p. 46. 

[25] G. Sodeifian, S.A. Sajadian, F. Razmimanesh, Fluid 

Phase Equilib. 25 (2017) 149-159. 

[26] P.C. Larissa, M.C. Acosta, C. Turner, J. Supercrit. Fluids  



150 

PRASAD et al.: CHEMICAL ROUTE FOR SYNTHESIS OF CITRIC ACID … Chem. Ind. Chem. Eng. Q. 28 (2) 141−150 (2022) 
 

 

 

130 (2017) 381-388. 

[27] K. Tamura, R.S. Alwi, Dyes Pigm. 113 (2015) 351–356. 

[28] R.S. Alwi, T. Tanaka, K. Tamura, J. Chem. Thermodyn. 

74 (2014) 119–125. 

[29] P. Coimbra, M.H. Gil, C.M.M. Duarte, B.M Heron, H.C. de 

Sousa, Fluid Phase Equilib. 238 (2005) 120–128. 

[30] A. Mehdi, M. Mehrdad, Z. Fatemeh, Chin. J. Chem. Eng. 

22 (2014) 549–558. 

[31] G.R. Bitencourt, F.A. Cabral, A. Meirelles, J. Chem. 

Thermodyn. 103 (2016) 285–291. 

[32] C. Chun-Ta, L. Chen-An, T. Muoi, Y.P. Chen, J. CO2 Util. 

18 (2017) 173–180. 

[33] Y. Khayyat, S.M. Kashkouli, F. Esmaeilzadeh, Fluid 

Phase Equilib. 399 (2015) 98–104. 

[34] M. Ota, M. Sato, Y. Sato, L.S.J. Richard, H. Inomata, J. 

Supercrit. Fluids 128 (2017) 166–172. 

[35] J.P. Paulaa, I.M.O. Sousab, M. Foglioc, F. Cabral, J. 

Supercrit. Fluids 112 (2016) 89–94. 

[36] A.G. Reveco-Chilla, A.L. Cabrera, J.C. de la Fuente, F.C. 

Zacconi, J.M. del Valle, L.M. Valenzuela, Fluid Phase 

Equilib.42 (2016) 84-92. 

[37] G. Sodeifian, S. Sajadian, N.S. Ardestani, J. Supercrit. 

Fluids128 (2017) 102-111. 

[38] F.C. Zacconi, O.N. Nuñez, A.L. Cabrera, L.M. Valenzuela, 

J.M. del Valle, J.C. de la Fuente, J. Chem. Thermodyn. 

103 (2016) 325-332. 

[39] E. Potrich, F.A.P. Voll, V.F. Cabral, L. Cardozo Filho, 

Chem. Ind. Chem. Eng. Q. 25 (2019) 153−162. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

ABDALLAH ABDALLAH EL 

HADJ 1,2 ,  

MAAMAR LAIDI 2 

SALAH HANINI 2  

1 Faculty of Science, University 

Saad Dahleb of Blida 1, Blida, 

Algeria 

2 Laboratory of BioMaterial and 

transfer Phenomena (LBMPT), 

University of Medea, Medea, 

Algeria 

 

 
NAUČNI RAD 

NOVA METODA ZASNOVANA NA NEURO-FAZI 
SISTEMU I PSO ALGORITMU ZA PROCENU 
KARAKTERISTIKA FAZNE RAVNOTEŽE 

 
Predmet ovog rada je predlaganje nove metode zasnovane na ANFIS sistemu i PSO 

algoritmu za osmišljavanje modela za procenu rastvorljivosti čvrstih lekova u natkritičnom 

CO2. Visoki nelinearni proces je modelovan neuro-fazi pristupom (NFS). PSO algoritam 

je korišćen u dve svrhe: za zamenu standardne propagacije unazad u obuci NFS-a i 

optimizacija procesa. Strategija validacije je sprovedena korišćenjem analize linearne 

regresije i upoređenjem predviđenih sa eksperimentalnim podacima. ANFIS pristup je 

upoređivan sa ANN u smislu tačnosti. Statistička analiza predvidljivosti optimizovanog 

modela obučenog PSO algoritmom (ANFIS-PSO) pokazuje bolje slaganje sa referentnim 

podacima od ANN metode. Štaviše, poređenje u smislu AARD devijacije (%) između 

predviđenih rezultata, rezultata predviđenih modelima zasnovanim na gustini i skupa 

jednačina stanja pokazuje da ANFIS-PSO model daleko bolje korelira rastvorljivost 

čvrstih lekova u natkritičnom CO2. Takođe, po prvi put je razvijena kontrolna strategija u 

oblasti fazne ravnoteže korišćenjem neuro-fazi inverznog pristupa (ANFISi) za procenu 

svojstava čistih komponenti iz podataka o rastvorljivosti bez prolaska kroz GCM metode. 

Ključne reči: modeliovanje, ANFIS, veštačke neuronske mreže, kritična svojstva, 
optimizacija rojem čestica. 



@Article{Abdallah2022,

  author    = {Abdallah, Ci&ceq and {El Hadj}, Abdallah and Laidi, Maamar and Hanini, Salah and {Dahleb Of Blida}, Saad and Blida, Algeria},

  journal   = {Chemical Industry & Chemical Engineering Quarterly},

  title     = {{NEW METHOD BASED ON NEURO-FUZZY SYSTEM AND PSO ALGORITHM FOR ESTIMATING PHASE EQUILIBRIA PROPERTIES: Scientific paper}},

  year      = {2022},

  issn      = {1451-9372},

  month     = {may},

  number    = {2},

  pages     = {141--150},

  volume    = {28},

  abstract  = {The subject of this work is to propose a new method based on the ANFIS system and PSO algorithm to conceive a model for estimating the solubility of solid drugs in supercritical CO2 (sc-CO2). The high nonlinear process was modeled by the neuro-fuzzy approach (NFS). The PSO algorithm was used for two purposes: replacing the standard backpropagation in training the NFS and optimizing the process. The validation strategy has been carried out using a linear regression analysis of the predicted versus experimental outputs. The ANFIS approach is compared to the ANN in terms of accuracy. Statistical analysis of the predictability of the optimized model trained with a PSO algorithm (ANFIS-PSO) shows a better  agreement with the reference data than the ANN method. Furthermore, the comparison in terms of the AARD deviation (%) between the predicted results, the results predicted by the density-based models, and a set of equations of state demonstrates that the ANFIS-PSO model correlates far better with the solubility of the solid drugs in scCO2. A control strategy was also developed for the first time in the field of phase equilibrium by using the neuro-fuzzy inverse approach (ANFISi) to estimate pure component properties from the solubility data without passing through the GCM methods.},

  doi       = {10.2298/CICEQ201104024A},

  file      = {:D\:/OneDrive/Mendeley Desktop/Abdallah et al. - 2022 - NEW METHOD BASED ON NEURO-FUZZY SYSTEM AND PSO ALGORITHM FOR ESTIMATING PHASE EQUILIBRIA PROPERTIES Scientific.pdf:pdf;:CICEQ_Vol28_ No2_p141-150_Apr-Jun_2022.pdf:PDF},

  keywords  = {ANFIS, Artificial neural networks, Critical properties, Particle swarm optimization},

  publisher = {Association of Chemical Engineers of Serbia},

  url       = {https://www.ache-pub.org.rs/index.php/CICEQ/article/view/935},

}



