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INFRARED DRYING OF CARROT SLICES: EFFECT OF 
POWER LEVELS ON KINETICS AND ENERGY EFFICIENCY 

Highlights    

 The drying process of carrot slices using an infrared dryer was conducted. 
 Drying time decreased with increasing infrared power level. 
 The Midilli & Kucuk model better fits all the applied drying conditions. 
 The highest effective moisture diffusivity was obtained in samples dried at an 

88 W IR power level. 

Abstract    

The aim of this study is to optimize the drying conditions for yellow carrots by 
investigating the effects of varying infrared (IR) power levels on drying kinetics. 
Following drying tests at IR power levels of 38, 50, 62, 74, and 88 W, the initial 
moisture content of carrot slices (6.95 kg water/kg dry matter) was decreased to 
0.11 kg water/kg dry matter. Drying times ranged from 300 minutes at 38 W to 
110 minutes at 88 W, demonstrating an inverse relationship between IR power 
and drying duration. Higher IR power levels accelerated the drying rate by 
enhancing energy transfer, which promoted moisture removal efficiency. 
Effective diffusion coefficients, calculated as ranging from 7.73×10-10 to 
2.21×10-9 m²/s for the power levels of 38 W to 88 W, indicate an increase in 
moisture migration with higher power. The process's energy requirements were 
reflected in the activation energy for moisture diffusion (1.967 kW/kg). The Midilli 
and Kucuk model offered the best fit for characterizing the drying behaviour, and 
statistical analysis validated the model's correctness. These findings provide 
valuable insights for optimizing IR drying conditions to enhance the efficiency and 
quality of yellow carrot drying processes.  

Keywords: Infrared drying, mathematical modelling, drying kinetics, 
diffusion coefficient, activation energy. 

INTRODUCTION 

Carrots, cultivated worldwide for over two millennia, 
represent a versatile root vegetable characterized by 
variations in shape, size, and colour, with the orange type 
being predominant. Carrots, which have only 171.5 kJ per 
100 grams, have several health benefits, such as prevent-
ing diabetes, heart disease, night blindness, cataracts, and 

some types of cancer [1]. Post-harvest decay remains a 
major obstacle to extending the shelf life of vegetables, with 
approximately 17% of total produce lost during post-harvest 
handling. Various preservation techniques are employed to 
mitigate this issue, including refrigeration and controlled 
atmosphere storage. While exposure to elevated tempera-
tures can result in wilting and reduce the aesthetic quality 

of carrots, significant quantities are dried in many agricultu-
ral regions to improve durability, lower transportation 
weight, and maintain both flavour and nutritional integrity 
[2]. 

The primary method of heat transfer in drying opera-
tions is convection, which causes water to evaporate into 
the air as heat is transferred from hot air to the product. 
However, there are several drawbacks to convective drying 
of agricultural goods, mostly related to the indirect heating 
mechanism via air, such as long drying durations, variable 
product quality, low efficiency, and high energy require-
ments. Alternative drying methods have been developed 
because of these inefficiencies [3]. 

Infrared drying presents numerous advantages over 
traditional methods, including faster drying times, greater 
energy efficiency, uniform temperature distribution, super-
ior product quality, improved process control, high heat 
transfer rates, spatial efficiency, and environmental sus-
tainability. Recent advancements in radiator technology 
have enhanced its efficiency and compact design. The 
absorption of IR energy by water is critical to drying kinetics, 
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with moist, porous materials enabling deeper radiation 
penetration, which diminishes as moisture content reduces 
[4, 5]. 

A precise method for describing drying kinetics, 
especially in agricultural products, is mathematical 
modelling. This approach relies on the application of 
correlation and regression statistical methods to formulate 
equations that accurately depict the dynamics of the drying 
process. Various experimental models have been 
extensively studied, particularly for the falling rate drying 
phase. Frequently utilized models include linear, power, 
exponential, Arrhenius, and logarithmic functions, with 
polynomial models applied when these alternatives yield 
low determination coefficients [6, 7]. 

This research seeks to establish a predictive model for 
moisture reduction in carrot drying, aligning quality 
parameters with the product's thermal and moisture 
behaviours to enhance process control precision. Mathe-
matical modeling provides a cost-effective alternative for 
manufacturers, fostering innovation in product and process 
development while circumventing the high costs associated 
with experimental trials. The study is to simulate the 
infrared drying process for carrot slices, evaluate the drying 
process's energy efficiency at different IR power levels, and 
ascertain the activation energy needed for efficient 
moisture removal. The diffusion coefficient of sample 
drying was calculated, and a correlation between the 
mathematical models and moisture ratio, indicating water 
loss, was established. Statistical analysis was conducted to 
validate and verify the models. Additionally, the study 
intends to assess the effectiveness of infrared drying as a 
drying method with the dynamics of heat and mass transfer 
during the process of drying samples. 

This study aims to develop a predictive model for 
moisture reduction during the infrared drying of carrot 
slices, integrating key quality parameters with the 
fundamental thermophysical and hydric behaviour of the 
product to achieve superior process control. A critical 
synthesis of the extant literature identified a pronounced 
research gap: although investigations into drying kinetics, 
quality degradation, and empirical modeling are plentiful, 
there is a conspicuous absence of systematic analysis 
concerning energy efficiency across a spectrum of infrared 
power densities. This work directly addresses this omission 
by conducting a concurrent investigation into the drying 
characteristics and energy consumption metrics of carrot 
slices under infrared radiation. The employment of 
mathematical modeling presents an economically viable 
strategy for industry, circumventing the prohibitive costs of 
extensive experimental trials and thereby accelerating 
innovation in both product and process development. Our 
methodology entails the determination of the effective 
moisture diffusivity and the activation energy requisite for 
efficient desorption. Furthermore, we established a 
rigorous correlation between theoretical models and the 
experimental moisture ratio to quantitatively describe the 
dehydration process. The validity of these models was 
ascertained through robust statistical verification. 
Ultimately, this research provided a holistic evaluation of 
infrared drying by synergistically examining energy 

efficiency, kinetic parameters, and the underlying heat and 
mass transfer phenomena. This integrated approach yields 
novel insights for the optimization of energy utilization 
without compromising drying efficacy, thereby contributing 
advanced and actionable knowledge to the field of food 
engineering and drying technology. 

MATERIAL AND METHODS 

Materials 

Freshly harvested carrots (Daucus carota L. subsp. 
sativus) were obtained from the local market in Beypazarı 
(Türkiye). The samples were cut into uniform discs (6 ± 0.1 
mm thickness, 40 ± 0.1 mm diameter). The initial moisture 
content, determined by the AOAC method [8], was 87.42% 
(wet basis). 

Experimental procedure  

A laboratory-scale infrared dryer (Snijders Moisture 
Balance, Snijders b.v., Tilburg, Holland) with a power range 
of 38 W to 88 W was used for the drying tests. Carrot slices 
were placed evenly and homogeneously across an 
aluminium tray, ensuring a uniform thin-layer distribution. A 
sample mass of 38±0.1 g, consisting of eight cylindrical 
carrot slices, was loaded in a single layer for each drying 
run. The drying process was carried out at varying infrared 
power levels, set through the equipment's control unit. 
Moisture loss was measured at 10-minute intervals with a 
digital balance (Mettler-Toledo AG, Greifensee, 
Switzerland, model BB3000), with an accuracy of 0.1 g. 
The drying was continued until the samples reached a final 
moisture content of 10% (wb). The carrot slices were 
dehydrated to a final moisture content of approximately 13–
14% (wet basis), which is generally regarded as the optimal 
level for safe storage [9]. In the present study, however, a 
target moisture level of around 10% was selected to ensure 
the stability of the dried samples for subsequent analyses. 
Drying beyond this point was intentionally avoided for two 
primary reasons: energy efficiency and product quality 
preservation. Excessive drying below 10% would not only 
lead to unnecessary energy consumption but also increase 
the risk of quality degradation, as prolonged exposure to 
hot air can adversely affect both the texture and the 
nutritional properties of carrots. Moreover, as the moisture 
content decreases, the driving force for mass transfer 
between the carrot slices and the drying air diminishes, 
thereby extending drying time. This prolonged process can 
further exacerbate quality losses. In addition, the 
phenomenon of case hardening [10] - a condition where a 
hardened surface layer forms during drying – impedes 
effective moisture removal, making it more difficult to 
reduce the moisture content below 10%. For these 
reasons, maintaining the final moisture level at 
approximately 10% was considered both a practical and 
scientifically sound approach. After drying, the samples 
were cooled and sealed in low-density polyethylene 
(LDPE) bags for storage. To form the drying curves, the 
average moisture content was determined after each 
experiment was run in triplicate. 
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Mathematical modeling 

Moisture content was computed with the equation: 

𝑀 =  
ெ౭

ெౚ
            (1)  

where Mw is the sample's wet weight (kg), Md is its dry 
weight (kg), and M is the moisture content (kg water/kg dry 
matter). The eleven thin-layer drying models displayed in 
Table 1 were fitted to the data gathered from the drying of 
carrot slices. Eq. (2) was used to determine the moisture 
ratio (MR) values from the designated models. 

𝑀𝑅 =  
ெ౪ିெ౛

ெబିெ౛
         (2) 

where Mt, M0, and Me are the moisture content at any time, 
the initial moisture content, and the equilibrium moisture 
content (kg water/kg dry matter), respectively, and t is the 
drying time (min). The values of Me are minute relative to Mt 
and M0  for a long drying period, so a simplified form of the 
moisture ratio can be used as expressed in Eq. (3): 

𝑀𝑅 =  
୑౪

ெబ
          (3) 

The drying rate (DR) of carrot slices was calculated 
using Eq. (4): 

𝐷𝑅 =
ெ೟ିெ೟శ೟

௧
        (4) 

where Mt  and Mt+t is moisture contents at t and t+t (kg 
water/kg dry matter), respectively, and t is time (min). 

Statistical analysis 

To analyze the data, Statistica 10.0 (StatSoft Inc., 
Tulsa, OK, USA) was utilized. The model parameters were 
estimated using a non-linear regression technique, and the 
fit was maximized using the Levenberg-Marquardt 
technique. Three statistical criteria—the coefficient of 
determination (R2), reduced chi-square (2), and root mean 
square error (RMSE)—were used to evaluate how well the 
model fit the experimental data. These metrics were 
calculated using specific equations, providing a 
comprehensive evaluation of the models' predictive 
performance by measuring the goodness-of-fit and 
deviation of the predicted values from the observed data. 
The aforementioned parameters were computed using the 
mathematical expressions in Eqs. (5), (6), and (7). These 
formulas are designed to quantify the accuracy and 
reliability of the model predictions. As a measure of the 
model's explanatory capacity, the R2 shows the percentage 
of variance in the observed data that can be explained by 
the model. The 2 assesses the goodness-of-fit by 
accounting for the degree of freedom, while the RMSE 
quantifies the average deviation between predicted and 
observed values, offering insight into the model’s predictive 
precision [22]. 

𝑅ଶ = 1 − 
∑ (ெோ౛౮౦,౟ିெோ౦౨౛,౟)మಿ

೔సభ

∑ (ெோ౦౨౛ିெோ౛౮౦,౟)మಿ
೔సభ

     (5) 

𝑥ଶ =  
∑ (ெோ೐౮౦,౟ିெோ౦౨౛,౟)మಿ

೔సభ

ேି௡
      (6) 

𝑅𝑀𝑆𝐸 = [
ଵ

ே
∑ ൫𝑀𝑅୮୰ୣ,୧ − 𝑀𝑅ୣ୶୮,୧൯

ଶே
௜ୀଵ ]

భ

మ (7) 

The experimentally observed and model-predicted 
moisture ratio values are denoted by MRexp and MRpre, 
respectively, in these equations. N refers to the number of 
parameters, whereas n indicates the total number of 
experimental data points. The model with the lowest values 
of RMSE and 2; the highest R2-value indicated the best fit 
for explaining the drying behaviour of the samples [23]. 

Assessment of effective moisture diffusivity  

Internal diffusion processes primarily regulate the 
moisture transfer during the lowering rate stage, which is 
when the drying process usually takes place. Fick's second 
rule of unsteady-state diffusion is widely used to characteri-
ze the drying kinetics in this phase for a range of materials. 
This equation provides a mathematical framework that links 
the concentration gradient of moisture within the material to 
the rate of diffusion, allowing a comprehensive understand-
ing of how moisture transfers from the interior to the surface 
during drying. By utilizing Fick's second law, researchers 
can effectively model and predict the dynamics of moisture 
removal, facilitating the optimization of drying processes 
and improving the quality of the final product [24]: 
பெ

ப௧
= ∇ (𝐷ୣ୤୤∇𝑀)        (8) 

When Crank [25] solved the diffusion equation (Eq. 8) 
for the slab geometry, it was assumed that the initial 
moisture distribution was uniform, with low external 
resistance, constant diffusion, and minimal shrinkage: 

𝑀𝑅 =  
଼

గమ
∑

ଵ

(ଶ௡ାଵ)మ
exp (−

(ଶ௡ାଵ)మగమ஽౛౜౜௧

ସ௅మ
)ஶ

௡ୀ଴ (9) 

where n is a positive integer, L is the slab's half-thickness 
in samples (m), and Deff is the effective moisture diffusivity 
(m2/s). 

Eq. (9) can be simplified to get an approximate but 
reasonable prediction of drying kinetics during the early 
phases of the decreasing rate period when carrot drying is 
viewed as an infinite slab geometry. Only the series' 
dominating term is considered in this simplification, which 
is predicated on lengthy drying times. When characterizing 
the behaviour of moisture diffusion during prolonged drying 
periods, this reduction offers a compromise between 
computing efficiency and allowable inaccuracy [26]. The 
approximate analytical solution of Eq. (9) for slab shape is 
provided in Eq. (10) below, assuming a uniform starting 
moisture distribution, negligible external mass transfer 
resistance, and minimum shrinkage. 

𝑀𝑅 =
଼

గమ
exp (−

గమ஽ ౛౜౜௧

ସ௅మ
)      (10) 

Slope from Eq. (11) is used to determine effective 
moisture diffusivity. A linear relationship with a slope 
represented by K is obtained when the natural logarithm of 
the moisture ratio (MR) is plotted versus time. From this, 
Eq. (11) is derived, allowing for a precise estimation of 
effective moisture diffusivity. This approach provides a 
robust method for analysing the drying kinetics, as the 
linearity in the plot reflects the diffusion-controlled nature of 
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the moisture removal process, further enabling the 
accurate quantification of diffusivity [27]: 

𝐾 =
గమ஽౛౜౜

ସ௅మ
         (11) 

Calculation of the activation energy 

A modified form of the Arrhenius equation was applied 
to describe the relationship between effective diffusivity and 
the ratio of infrared power to sample weight. This approach 
allows for the calculation of activation energy, which was 
determined using Eq. (12). The adapted model provides 
valuable insight into how varying infrared power levels 
influence the moisture removal process, enabling more 
precise control and optimization of drying conditions to 
improve efficiency and product quality [28]. 

𝐷ୣ୤୤ = 𝐷଴exp ቀ−
ாೌ௠

௉
ቁ      (12) 

In this equation, D0 denotes the pre-exponential factor 
(m²/s), Ea is the activation energy (W/kg), P is the infrared 
power (W), and m is the sample weight (kg), collectively 
governing the dependence of effective moisture diffusivity 
on power input. 

Efficiency of drying process 

Drying efficiency measures the effectiveness of energy 
utilization in the moisture removal process during drying. It 
serves as a key indicator of the performance of drying 
systems, reflecting the equilibrium between energy 
consumption and the rate of moisture evaporation. High 
drying efficiency suggests that a substantial portion of the 
input energy is efficiently used for moisture extraction, 
minimizing energy wastage. Several factors, including 
drying temperature, infrared power levels, air velocity, and 
the intrinsic properties of the material, significantly impact 
drying efficiency. Optimizing these variables is essential for 
enhancing process sustainability, reducing energy con-
sumption, and lowering operational costs [29,30]. 

Infrared drying efficiency was calculated as the ratio of 
the total heat energy provided by the drying system to the 
thermal energy needed to remove the moisture from the 
carrot slices. This metric provides insight into how 
effectively the energy delivered by the dryer is harnessed 
for the intended purpose of moisture removal, offering a 
quantitative measure of energy utilization. A higher ratio 
indicates greater efficiency, signifying that a larger portion 
of the supplied heat is being effectively converted into latent 
heat for water evaporation, rather than being lost through 
other processes, such as heat dissipation to the 
surroundings [31]. 

𝜂 = ቀ
௠ೢఒ౭

௉୲
ቁ × 100        (13) 

In Eq. (13), 𝜂 represents the infrared drying efficiency 
(%), where 𝑃 is the applied infrared power (W), 𝑚୵ is the 
mass of evaporated water (g), and 𝑡 is the drying duration 
(min). The latent heat of vaporization of water (𝜆୵), taken 
as 2257 J/g, specifies the energy required for phase 
transition under isothermal conditions. This formulation 
provides a concise yet rigorous means of quantifying the 
proportion of infrared energy effectively utilized for moisture 
removal, offering a robust basis for evaluating energy 

efficiency, optimizing process parameters, and advancing 
sustainable drying technologies [28]. 

RESULTS AND DISCUSSION 

Drying curves 

Drying behavior of carrot slices under the infrared 
method at varying power levels, as depicted in Fig. 1, 
demonstrates that moisture removal rates increase with 
rising infrared power. This is due to a greater moisture 
concentration gradient within the carrot slices, accelerating 
moisture diffusion. The higher power densities of the 
halogen lamp of the infrared dryer, such as 88 W, 
significantly reduce the drying time.  

 
Figure 1. Carrot slice drying curves at different levels of infrared 

power. 

Since larger energy rates are applied to the material, 
which results in the enlargement of both intracellular and 
intercellular pores in the carrot tissue, increased infrared 
power levels enable a quick decrease in the moisture 
content of the carrot. This structural change enhances 
water vapour diffusion from the carrot slices to the 
surrounding environment, thus lowering drying time. Such 
observations align with prior studies, including carrot [32], 
apple [33], and lemon slices [34]. In these studies, high 
drying intensities promoted structural cracking and 
shortened the overall processing time by improving water 
diffusion. 

Fig. 2 shows the drying rate curves for carrot slices, 
where no drying period at a constant rate was observed for 
all experimental conditions, indicating that the drying 
process occurred after a short preheating period with a 
completely falling-rate period. This behaviour highlights 
diffusion as the main mechanism controlling moisture 
transport in carrot slices by showing a consistent drop in 
moisture content over the course of the drying period. This 
is in agreement with previously published studies on root 
vegetables, which emphasize that moisture removal during 
IR drying is predominantly governed by internal moisture 
diffusion rather than surface evaporation [2].  Furthermore, 
an increase in infrared power led to an elevated drying rate, 
signifying that higher infrared power enhances both heat 
and mass transfer, thereby accelerating water loss from the 
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samples.  

 
Figure 2. Carrot slice drying rate curves with respect to drying time 

for different IR power levels. 

Initial drying rates were higher during the drying 
process, but they gradually decreased as the moisture 
content declined. This reduction in drying rate is likely due 
to the decreased porosity of the samples, resulting from 
shrinkage over time, which heightens resistance to water 
migration and further slows the drying rate. This shrinkage 
effect has been well documented in convective and infrared 
drying studies, where tissue densification narrows capillary 
pathways and lowers effective moisture diffusivity. These 
findings align well with prior research on drying kinetics in 
agricultural materials [35-37]. These studies similarly 
identified a falling-rate period in the drying process, 
attributed to structural transformations within the material 
that reduce moisture diffusivity. Such structural changes 
can hinder moisture migration pathways, thus decelerating 
the drying rate. This phase underscores the importance of 
internal structural shifts, which profoundly impact moisture 
retention, drying efficiency, and overall product quality 
throughout the drying cycle. 

Modelling of thin-layer drying processes for carrot slices 

The drying experiments' moisture content data were 
transformed into moisture ratio (MR) values, as indicated in 
Table 1, and these values were then applied to fit various 
thin-layer drying models. Eleven distinct models were 
evaluated to determine which one would be best for 
forecasting sample drying times. To assess model 
accuracy, statistical indices, including the R², the χ², and 
RMSE, were calculated to measure the goodness of fit, as 
presented in Eqs. (4), (5), and (6). The selection criterion 
for the optimal model was based on the highest R² value 
combined with the lowest χ² and RMSE values. For the 
range of experiments, the models yielded R² values 
between 0.988 and 1.000, RMSE values from 0.0033 to 
0.0507, and χ² values ranging from 0.0014 to 0.3114. 
These statistical outputs provided insight into the precision 
and predictive accuracy of each model. 

Table 2 presents the parameter estimates for eleven 
mathematical models applied to carrot slices, reflecting 
variations attributable to different infrared power levels. 

Each parameter estimate achieved statistical significance, 
meeting or exceeding a 1% significance level, thereby 
demonstrating the models' robustness and precision in 
characterizing drying kinetics under diverse experimental 
conditions. Notably, the Midilli & Kucuk model exhibited 
superior performance relative to the other models, as 
evidenced by its highest R² and lowest values for χ² and 
RMSE, indicating its exceptional fit and reliability in 
accurately modelling the drying behaviour. 

 
Table 1. Semi-empirical models utilized in the analysis of 

carrot slice drying. 
Name of Model Model Reference 

Lewis 𝑀𝑅 = exp(−𝑘𝑡) [11] 

Henderson and Pabis 𝑀𝑅 = 𝑎exp(−𝑘𝑡) [12] 

Logarithmic 𝑀𝑅 = 𝑎exp(−𝑘𝑡) + 𝑐 [13] 

Midilli and Kucuk 𝑀𝑅 = 𝑎exp(−𝑘𝑡௡) + 𝑏 [14] 

Wang and Singh 𝑀𝑅 = 1 + 𝑎𝑡 + 𝑏𝑡ଶ [15] 

Aghbashlo et al. 𝑀𝑅 = exp ൬−
𝑎𝑡

1 + 𝑏𝑡
൰ [16] 

Page 𝑀𝑅 = exp(−𝑘𝑡௡) [17] 

Logistic 𝑀𝑅 =
𝑏

1 + 𝑎exp(−𝑘𝑡)
 [18] 

Jena and Das 𝑀𝑅 = 𝑎exp൫−𝑘𝑡 + 𝑏√𝑡൯ + 𝑐 [19] 

Vega-Galvez I 𝑀𝑅 = exp(𝑛 + 𝑘𝑡) [20] 

Vega and Lemus 𝑀𝑅 = (𝑎 + 𝑘𝑡)ଶ [21] 

 
The validity of the selected model for carrot slices dried 

at various infrared power levels is confirmed by comparing 
experimental moisture ratios (MR) with those predicted by 
the Midilli & Kucuk model in Fig. 3. Because the data points 
are precisely aligned along a 45° line, the findings show a 
significant agreement between the experimental and 
projected MR values, confirming the model's appli-cability 
for drying behavior of samples. 

Effective moisture diffusivity 

Plotting the logarithm of the moisture ratio (MR) 
regarding drying time at various infrared power levels was 
done using the experimental data. The effective moisture 
diffusivity (Deff) values for each infrared power level, 
computed by Eq. (11), are shown in Fig. 4. A power level of 
38 W produced the lowest Deff and a power level of 88 W 
produced the highest Deff. These findings indicate that 
higher power levels promote more effective drying of carrot 
slices within the studied parameters. This is attributed to 
the relatively high Deff values obtained, which suggest 
enhanced moisture mobility within the samples. When the 
power level rose, the impact on the Deff became significantly 
more apparent compared to lower power levels, as 
illustrated distinctly in Fig. 4. This effect can be attributed to 
the rapid temperature increase in carrot slices under high 
infrared power, which raises the vapour pressure and, in 
turn, accelerates the drying rate.  
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Table 2 Assessment of infrared-dried carrot slices at varying power levels using statistical metrics for thin-layer drying 
models. 

IR 
power 

Model 
Model Constants R2 2 RMSE 

a b c k n 

38 

Lewis    0.0119  0.9928 0.2123 0.0363 
Henderson & Pabis 1.0803   0.0128  0.9959 0.1156 0.0231 
Logarithmic 1.1049  -0.0451 0.0113  0.9975 0.3114 0.0181 
Midilli & Kucuk 0.9978 0.0002  0.0032 1.2819 0.9997 0.0095 0.0062 
Wang & Singh -0.0084 0.0001    0.9968 0.0957 0.0240 
Aghbashlo et al. 0.0092 -0.0019    0.9988 0.0110 0.0146 
Page    0.0036 1.2590 0.9996 0.0379 0.0069 
Logistic 1.7968 0.7754  0.0183  0.9995 0.0328 0.0067 
Jena & Das -0.0905 0.3226 1.1341 0.0103  0.9982 0.1377 0.0162 
Vega-Galvez I    -0.0128 0.0773 0.9959 0.1156 0.0231 
Vega & Lemus 0.9941 -0.0041    0.9969 0.0844 0.0226 

50 

Lewis    0.0142  0.9957 0.1071 0.0274 
Henderson & Pabis 1.0572   0.0150  0.9973 0.0601 0.0187 
Logarithmic 1.0714  -0.0272 0.0139  0.9980 0.1681 0.0163 
Midilli & Kucuk 0.9921 0.0004  0.0050 1.2353 0.9998 0.0059 0.0050 
Wang & Singh -0.0098 0.0002    0.9933 0.4931 0.0326 
Aghbashlo et al. 0.0118 -0.0017    0.9990 0.0889 0.0118 
Page    0.0060 1.1934 0.9997 0.0514 0.0070 
Logistic 2.0568 1.0470  0.0202  0.9997 0.0527 0.0064 
Jena & Das -0.1197 0.3082 1.1565 0.0105  0.9979 0.1624 0.0176 
Vega-Galvez I    -0.0150 0.0556 0.9973 0.0601 0.0187 
Vega & Lemus 0.9775 -0.0046    0.9948 0.0734 0.0283 

62 

Lewis    0.0187  0.9904 0.1842 0.0434 
Henderson & Pabis 1.0724   0.0200  0.9934 0.1271 0.0360 
Logarithmic 1.1481  -0.1068 0.0156  0.9978 0.1292 0.0207 
Midilli & Kucuk 0.9949 -0.0006  0.0053 1.2996 0.9999 0.0014 0.0031 
Wang & Singh -0.0137 0.0004    0.9993 0.0303 0.0113 
Aghbashlo et al. 0.0137 -0.0037    0.9994 0.0590 0.0103 
Page    0.0051 1.3114 0.9998 0.0034 0.0053 
Logistic 1.5462 0.5451  0.0316  0.9998 0.0036 0.0039 
Jena & Das -0.0512 0.5049 1.0684 0.0211  0.9992 0.0253 0.0119 
Vega-Galvez I    -0.0200 0.0699 0.9934 0.1271 0.0360 
Vega & Lemus 1.0025 -0.0068    0.9987 0.0907 0.0137 

74 

Lewis    0.0204  0.9915 0.1447 0.0405 
Henderson & Pabis 1.0567   0.0216  0.9937 0.1117 0.0350 
Logarithmic 1.1788  -0.1578 0.0155  0.9993 0.0085 0.0111 
Midilli & Kucuk 0.9976 -0.0003  0.0089 1.1837 0.9999 0.0029 0.0033 
Wang & Singh -0.0151 0.0005    0.9997 0.0084 0.0064 
Aghbashlo et al. 0.0153 -0.0038    0.9998 0.0010 0.0037 
Page    0.0069 1.2692 0.9993 0.0221 0.0114 
Logistic 1.6152 0.6245  0.0331  0.9995 0.0169 0.0089 
Jena & Das -0.0555 0.5099 1.0655 0.0222  0.9996 0.0075 0.0086 
Vega-Galvez I    -0.0216 0.0551 0.9937 0.1117 0.0350 
Vega & Lemus 0.9957 -0.0073    0.9992 0.1405 0.0118 

88 

Lewis    0.0234  0.9876 0.1690 0.0507 
Henderson & Pabis 1.0668   0.0249  0.9905 0.1302 0.0442 
Logarithmic 1.2354  -0.2073 0.0166  0.9984 0.0146 0.0174 
Midilli & Kucuk 0.9961 -0.0003  0.0072 1.2816 0.9998 0.0037 0.0051 
Wang & Singh -0.0172 0.0007    0.9995 0.0044 0.0093 
Aghbashlo et al. 0.0163 -0.0054    0.9997 0.0052 0.0067 
Page    0.0058 1.3560 0.9993 0.0167 0.0113 
Logistic 1.4242 0.4316  0.0422  0.9996 0.0124 0.0082 
Jena & Das -0.0375 0.6307 1.0448 0.0301  0.9997 0.0079 0.0076 
Vega-Galvez I    -0.0249 0.0647 0.9905 0.1302 0.0442 
Vega & Lemus 1.0049 -0.0086    0.9995 0.0574 0.0095 
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Figure 3. Carrot slice moisture ratios, both experimental and 

anticipated, at different IR power levels using the Midilli & Kucuk 
model 

 
Figure 4. Effect of infrared power levels on effective diffusion 

coefficient. 

The Deff values in this study ranged from 7.73×10-10 to 
2.21×10-9 m²/s, which aligns with those reported for other 
drying methods and agricultural products. For instance, in 
laboratory-scale convective drying of peach slices, Deff 
values were reported to range from 9.57×10-10 to  4.33×10-

9 m²/s across a temperature spectrum of 40-80°C [38]. In a 
similar context, the drying of okra yielded Deff values 
between 2.89×10-9 and 12.23×10-9 m²/s at radiation 
intensities of 0.167, 0.235, and 0.520 W/cm² [39]. These 
comparable values reinforce the reliability of our 
experimental data and confirm that the observed 
diffusivities are within the expected range for plant-based 
tissues under IR drying. 

To provide a prediction model for comprehending Deff 
dynamics under various drying conditions, a multiple 
regression analysis was also performed to explain the 
relationship between moisture diffusivity and power level. 
The correlation between the infrared power range utilized 
in our experimental studies and effective moisture 
diffusivity is articulated through the following equation: 

𝐷௘௙௙ = 2.86 × 10ିଵଵ𝑃 − 2.43 × 10ିଵ଴            
𝑅ଶ = 0.988         (14) 

where P represents the power level, measured in watts (W). 
This equation can serve as a practical predictive tool for 
estimating moisture transport rates in similar food matrices 
under IR drying conditions, thereby assisting in the design 
of energy-efficient drying protocols. 

Activation energy 

According to Eq. (12), the activation energy (Ea) was 
determined by plotting ln (Deff) against m/P (sample 
weight/infrared power in kg/W), which is the slope of the 
Arrhenius equation. Fig. 5 illustrates the relationship 
between ln (Deff) and m/P. The slope of the line in Fig. 5 
represents (-Ea), while the intercept corresponds to ln (D0). 
According to these findings, the Arrhenius dependence is 
supported by a linear connection. The impact of the sample 
weight-to-power ratio on Deff is captured by Eq. (15), with 
coefficients defining this relationship: 

𝐷௘௙௙ = 4.86 × 10ିଽexp ൬−
1967.5  𝑚

𝑃
൰            

𝑅ଶ = 0.999         (15) 

The maximal diffusion coefficients (D0) at infinite 
temperature and the activation energy (Ea) for carrot 
samples were derived using a modified Arrhenius-type 
exponential model, as indicated by Eq. (15). These 
parameters provide insights into the diffusion behaviours 
and thermal activation characteristics across the different 
samples. Specifically, the highest diffusivity that any 
sample may have under idealized thermal conditions is 
indicated by the theoretical diffusion coefficient at infinite 
temperature, or D0. In contrast, Ea quantifies the minimum 
energy barrier required for diffusion to occur, reflecting the 
sensitivity of each sample to temperature changes. By 
comparing D0 and Ea values, the model highlights the 
unique diffusion potential and thermal resistance for each 
sample, offering a detailed understanding of how each 
material may respond to varying thermal environments 
based on its molecular structure or composition [40]. 

 

 
Figure 5. A relationship of the Arrhenius type between infrared 

power and effective moisture diffusivity. 

When Eq. (15) is analysed, D0 value is determined as 
4.86×10-9 m²/s, and the Ea value is determined as 
1.967 kW/kg. These results, with minor variations, align 
with earlier studies on the drying processes of black carrots 
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[28] and orange carrots [41]. These findings underscore the 
significant role of infrared power level and drying conditions 
in determining the activation energy necessary for moisture 
removal. The variability observed in activation energy 
during food drying processes is likely influenced by several 
factors, including the type of food, its moisture content, and 
the specific drying methods employed. 

The Ea obtained in the present study (1.967 kW/kg) 
aligns with previously reported power-based values for 
carrots and carrot by-products. Doymaz [42] reported Ea = 
4.247 kW/kg for carrot slices dried at 62–125 W using a 
modified Arrhenius approach, while Ea = 5.73 kW/kg was 
observed for carrot pomace (83–209 W) [43], and Ea = 
3.65 kW/kg for black carrot pomace (104–230 W) [28]. The 
comparatively lower Ea reported here is justified by the use 
of lower IR power levels (38–88 W) and slightly thicker 
slices, which reduce power absorption per unit mass and 
shift drying toward a milder thermal regime. 

Experimental factors such as slice thickness, sample 
mass, emitter–sample distance, initial moisture content, and 
the moisture range used for fitting Deff substantially affect Ea 

determination. Toğrul [2] and Botelho et al. [32] emphasize 
that Ea should be interpreted within the context of these 
parameters, as lower IR powers generally result in slower 
drying rates and a smaller driving force, leading to reduced 
apparent Ea in power-based models. 

This study contributes to the literature by providing new 
data on Ea behaviour under low-to-moderate IR power 
conditions—a regime that remains underexplored. The 
findings are particularly relevant for industrial applications 
aiming to optimize energy efficiency and minimize thermal 
damage while maintaining product quality. 

Energy efficiency during the process of carrot drying 

Energy efficiency values were calculated using Eq. 
(13), and Fig. 6 illustrates how energy efficiency varied over 
the drying period for infrared drying of yellow carrot slices. 
Energy efficiency was initially very high, reflecting greater 
infrared power absorption. As moisture content and energy 
absorption in the samples decreased, infrared power 
reflection increased instead. The highest energy efficiency 
was observed at an infrared power level of 88 W.  

The energy efficiency of yellow carrot slices exhibited 
a considerable range, varying from 0.02% to 33.1%, 
corresponding to power levels between 38 W and 88 W, 
indicating a significant dependence of efficiency on applied 
power. These findings align with prior research conducted 
on okra [44], which reported analogous trends in energy 
efficiency under comparable power conditions, further 
substantiating the influence of power intensity on the 
energy conversion efficacy in vegetable processing. The 
observed variability underscores the need for optimizing 
power parameters to enhance efficiency in such 
applications. 

CONCLUSION 

This study systematically examined the drying 
behavior of carrot slices using an infrared dryer operated at 
power levels ranging from 38 to 88 W. The findings  
 

demonstrated that infrared radiation intensity exerted a 
significant influence on drying kinetics, particularly on 
drying time and effective moisture diffusivity. An increase in 
infrared power substantially reduced the overall drying 
duration by enhancing the moisture diffusion coefficient, 
which varied between 7.73×10⁻10 and 2.21×10⁻⁹ m²/s 
across the tested power range. All drying operations 
occurred within the falling-rate period, confirming that the 
moisture removal process was predominantly governed by 
internal diffusion mechanisms rather than surface evapo-
ration. Among the mathematical models evaluated, the 
Midilli & Kucuk model exhibited the highest predictive 
accuracy, effectively characterizing the drying kinetics 
under various infrared power conditions. 

 
Figure 6. The change of energy efficiency (%) with respect to the 

infrared power level. 

The activation energy, calculated using an Arrhenius-
type relationship, was determined to be 1.967 kW/kg, 
representing the energy barrier for moisture diffusion. 
Although higher infrared power promoted accelerated 
moisture removal during the initial drying stages, prolonged 
exposure resulted in diminished energy efficiency due to 
the gradual reduction of the moisture gradient between the 
sample and the surrounding air, thereby lowering the 
driving force for mass transfer. These results emphasize 
the significance of defining infrared drying parameters 
through comprehensive kinetic modeling and energy 
performance evaluation rather than relying solely on 
process rate enhancement. The strong correlation between 
experimental data and the Midilli & Kucuk model under-
scores its applicability as a reliable predictive framework for 
process design and scale-up in infrared drying systems. 
Future investigations should integrate kinetic modeling with 
detailed energy analysis to further elucidate the relation-
ship between power input, mass transfer behavior, and 
energy utilization efficiency, ultimately advancing the 
development of optimized, sustainable infrared drying 
technologies. Overall, the findings provide a valuable 
contribution to the understanding of infrared drying 
mechanisms, supporting the design of faster and more 
energy-efficient dehydration processes while maintaining 
desirable product characteristics. 
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LIST OF SYMBOLS  

D0: Pre-exponential factor in Arrhenius equation (m2/s) 
Deff: Effective diffusivity (m2/s) 
Ea: Activation energy (W/kg) 
K: Slope 
L: Half the slice thickness of the sample  
M: Moisture content (kg water/kg dry matter) 
M0: Initial moisture content (kg water/kg dry matter) 
Md: Dry weight (kg) 
Me: Equilibrium moisture content (kg water/kg dry) 
MRexp: Experimental moisture ratio 
MRpre: Predicted moisture ratio 
Mt: Moisture content at any time (kg water/kg dry matter) 
Mt+Δt: Moisture content at t+Δt  
mw: Mass of evaporated water (g) 
MW: Sample weight (kg)  
n: Number of experimental data points 
N: Number of parameters 
P: Infrared power (W) 
R2: Coefficient of determination  
Δt: Drying time (min.) 
η: Drying efficiency  
λw: Latent heat of vaporization  
χ2: Chi-square  

ABBREVIATIONS   

AOAC: Association of Official Agricultural Chemists  
LDPE: Low-density polyethylene  
MR: Moisture ratio 
DR: Drying rate (kg water/kg dry matter * time) 
RMSE: Estimated standard error  
US: Ultrasound  
HD: Hot air drying  
MWD: Microwave drying 
INFD: Infrared drying 
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NAUČNI RAD  

INFRACRVENO SUŠENJE KRIŠKI ŠARGAREPE: UTICAJ 
NIVOA SNAGE NA KINETIKU I ENERGETSKU 
EFIKASNOST 

 

Cilj ove studije je optimizacija uslova sušenja žute šargarepe istraživanjem 
efekata različitih nivoa snage infracrvenog (IC) zračenja na kinetiku sušenja. 
Nakon testova sušenja na nivoima snage IC zračenja od 38, 50, 62, 74 i 88 W, 
početni sadržaj vlage u kriškama šargarepe (6,95 kg vode/kg suve materije) 
smanjen je na 0,11 kg vode/kg suve materije. Vremena sušenja kretala su se 
od 300 minuta pri 38 W do 110 minuta pri 88 W, što pokazuje obrnutu vezu 
između snage IC zračenja i trajanja sušenja. Viši nivoi snage IC zračenja 
ubrzali su sušenje poboljšanjem prenosa energije, što je podstaklo efikasnost 
uklanjanja vlage. Efektivni koeficijenti difuzije, izračunati u rasponu od 
7,73×10-10 do 2,21×10-9 m²/s za nivoe snage od 38 W do 88 W, ukazuju na 
povećanje migracije vlage sa većom snagom. Energetske potrebe procesa 
odražene su u energiji aktivacije za difuziju vlage (1,967 kW/kg). Model Midilija 
i Kučuka ponudio je najbolje rešenje za karakterizaciju ponašanja sušenja, a 
statistička analiza je potvrdila ispravnost modela. Ovi nalazi pružaju vredne 
uvide za optimizaciju uslova infracrvenog sušenja kako bi se poboljšala 
efikasnost i kvalitet procesa sušenja žute šargarepe. 

 

Ključne reči: Infracrveno sušenje, matematičko modelovanje, kinetika 
sušenja, koeficijent difuzije, energija aktivacije. 

 


