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INFRARED DRYING OF CARROT SLICES: EFFECT OF
POWER LEVELS ON KINETICS AND ENERGY EFFICIENCY

Highlights

« The drying process of carrot slices using an infrared dryer was conducted.

« Drying time decreased with increasing infrared power level.

« The Midilli & Kucuk model better fits all the applied drying conditions.

« The highest effective moisture diffusivity was obtained in samples dried at an
88 W IR power level.

Abstract

The aim of this study is to optimize the drying conditions for yellow carrots by
Investigating the effects of varying infrared (IR) power levels on drying kinetics.
Following drying tests at IR power levels of 38, 50, 62, 74, and 88 W, the initial
moisture content of carrot slices (6.95 kg water/kg dry matter) was decreased to
0.11 kg water/kg dry matter. Drying times ranged from 300 minutes at 38 W to
170 minutes at 88 W, demonstrating an inverse relationship between IR power
and drying duration. Higher IR power levels accelerated the drying rate by
enhancing energy transfer, which promoted moisture removal efficiency.
Effective diffusion coefficients, calculated as ranging from 7.73x10-10 to
2.21x10-9 m%s for the power levels of 38 W to 88 W, indicate an increase in
moisture migration with higher power. The process's energy requirements were
reflected in the activation energy for moisture diffusion (1.967 kWikg). The Midilli
and Kucuk model offered the best fit for characterizing the drying behaviour, and
statistical analysis validated the model's correctness. These findings provide
valuable insights for optimizing IR drying conditions to enhance the efficiency and
quality of yellow carrot drying processes.
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INTRODUCTION

Carrots, cultivated worldwide for over two millennia,
represent a versatile root vegetable characterized by
variations in shape, size, and colour, with the orange type
being predominant. Carrots, which have only 171.5 kJ per
100 grams, have several health benefits, such as prevent-
ing diabetes, heart disease, night blindness, cataracts, and
some types of cancer [1]. Post-harvest decay remains a
major obstacle to extending the shelf life of vegetables, with
approximately 17% of total produce lost during post-harvest
handling. Various preservation techniques are employed to
mitigate this issue, including refrigeration and controlled
atmosphere storage. While exposure to elevated tempera-
tures can result in wilting and reduce the aesthetic quality

Correspondence: I. Doymaz, Yildiz Technical University, Department of
Chemical Engineering, 34220 Esenler, istanbul, Turkiye.

Email: doymaz@yildiz.edu.tr

Paper received: 28 June 2025

Paper revised: 15 October 2025

Paper accepted: 19 November 2025

https://doi.org/10.2298/CICEQ250628028S

of carrots, significant quantities are dried in many agricultu-
ral regions to improve durability, lower transportation
weight, and maintain both flavour and nutritional integrity
[2].

The primary method of heat transfer in drying opera-
tions is convection, which causes water to evaporate into
the air as heat is transferred from hot air to the product.
However, there are several drawbacks to convective drying
of agricultural goods, mostly related to the indirect heating
mechanism via air, such as long drying durations, variable
product quality, low efficiency, and high energy require-
ments. Alternative drying methods have been developed
because of these inefficiencies [3].

Infrared drying presents numerous advantages over
traditional methods, including faster drying times, greater
energy efficiency, uniform temperature distribution, super-
ior product quality, improved process control, high heat
transfer rates, spatial efficiency, and environmental sus-
tainability. Recent advancements in radiator technology
have enhanced its efficiency and compact design. The
absorption of IR energy by water is critical to drying kinetics,
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with moist, porous materials enabling deeper radiation
penetration, which diminishes as moisture content reduces
[4, 5].

A precise method for describing drying kinetics,
especially in agricultural products, is mathematical
modelling. This approach relies on the application of
correlation and regression statistical methods to formulate
equations that accurately depict the dynamics of the drying
process. Various experimental models have been
extensively studied, particularly for the falling rate drying
phase. Frequently utilized models include linear, power,
exponential, Arrhenius, and logarithmic functions, with
polynomial models applied when these alternatives yield
low determination coefficients [6, 7].

This research seeks to establish a predictive model for
moisture reduction in carrot drying, aligning quality
parameters with the product's thermal and moisture
behaviours to enhance process control precision. Mathe-
matical modeling provides a cost-effective alternative for
manufacturers, fostering innovation in product and process
development while circumventing the high costs associated
with experimental trials. The study is to simulate the
infrared drying process for carrot slices, evaluate the drying
process's energy efficiency at different IR power levels, and
ascertain the activation energy needed for efficient
moisture removal. The diffusion coefficient of sample
drying was calculated, and a correlation between the
mathematical models and moisture ratio, indicating water
loss, was established. Statistical analysis was conducted to
validate and verify the models. Additionally, the study
intends to assess the effectiveness of infrared drying as a
drying method with the dynamics of heat and mass transfer
during the process of drying samples.

This study aims to develop a predictive model for
moisture reduction during the infrared drying of carrot
slices, integrating key quality parameters with the
fundamental thermophysical and hydric behaviour of the
product to achieve superior process control. A critical
synthesis of the extant literature identified a pronounced
research gap: although investigations into drying kinetics,
quality degradation, and empirical modeling are plentiful,
there is a conspicuous absence of systematic analysis
concerning energy efficiency across a spectrum of infrared
power densities. This work directly addresses this omission
by conducting a concurrent investigation into the drying
characteristics and energy consumption metrics of carrot
slices under infrared radiation. The employment of
mathematical modeling presents an economically viable
strategy for industry, circumventing the prohibitive costs of
extensive experimental trials and thereby accelerating
innovation in both product and process development. Our
methodology entails the determination of the effective
moisture diffusivity and the activation energy requisite for
efficient desorption. Furthermore, we established a
rigorous correlation between theoretical models and the
experimental moisture ratio to quantitatively describe the
dehydration process. The validity of these models was
ascertained through robust statistical verification.
Ultimately, this research provided a holistic evaluation of
infrared drying by synergistically examining energy

efficiency, kinetic parameters, and the underlying heat and
mass transfer phenomena. This integrated approach yields
novel insights for the optimization of energy utilization
without compromising drying efficacy, thereby contributing
advanced and actionable knowledge to the field of food
engineering and drying technology.

MATERIAL AND METHODS
Materials

Freshly harvested carrots (Daucus carota L. subsp.
sativus) were obtained from the local market in Beypazari
(Turkiye). The samples were cut into uniform discs (6 + 0.1
mm thickness, 40 + 0.1 mm diameter). The initial moisture
content, determined by the AOAC method [8], was 87.42%
(wet basis).

Experimental procedure

A laboratory-scale infrared dryer (Snijders Moisture
Balance, Snijders b.v., Tilburg, Holland) with a power range
of 38 W to 88 W was used for the drying tests. Carrot slices
were placed evenly and homogeneously across an
aluminium tray, ensuring a uniform thin-layer distribution. A
sample mass of 38+0.1 g, consisting of eight cylindrical
carrot slices, was loaded in a single layer for each drying
run. The drying process was carried out at varying infrared
power levels, set through the equipment's control unit.
Moisture loss was measured at 10-minute intervals with a
digital balance (Mettler-Toledo AG, Greifensee,
Switzerland, model BB3000), with an accuracy of 0.1 g.
The drying was continued until the samples reached a final
moisture content of 10% (wb). The carrot slices were
dehydrated to a final moisture content of approximately 13-
14% (wet basis), which is generally regarded as the optimal
level for safe storage [9]. In the present study, however, a
target moisture level of around 10% was selected to ensure
the stability of the dried samples for subsequent analyses.
Drying beyond this point was intentionally avoided for two
primary reasons: energy efficiency and product quality
preservation. Excessive drying below 10% would not only
lead to unnecessary energy consumption but also increase
the risk of quality degradation, as prolonged exposure to
hot air can adversely affect both the texture and the
nutritional properties of carrots. Moreover, as the moisture
content decreases, the driving force for mass transfer
between the carrot slices and the drying air diminishes,
thereby extending drying time. This prolonged process can
further exacerbate quality losses. In addition, the
phenomenon of case hardening [10] - a condition where a
hardened surface layer forms during drying - impedes
effective moisture removal, making it more difficult to
reduce the moisture content below 10%. For these
reasons, maintaining the final moisture level at
approximately 10% was considered both a practical and
scientifically sound approach. After drying, the samples
were cooled and sealed in low-density polyethylene
(LDPE) bags for storage. To form the drying curves, the
average moisture content was determined after each
experiment was run in triplicate.
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Mathematical modeling

Moisture content was computed with the equation:

_ My
M= = e,
where My is the sample's wet weight (kg), M is its dry
weight (kg), and Mis the moisture content (kg water/kg dry
matter). The eleven thin-layer drying models displayed in
Table 1 were fitted to the data gathered from the drying of
carrot slices. Eq. (2) was used to determine the moisture

ratio (MR) values from the designated models.

_ M¢—Me
MR = R~ )
where M, Mo, and M. are the moisture content at any time,
the initial moisture content, and the equilibrium moisture
content (kg water/kg dry matter), respectively, and t is the
drying time (min). The values of M. are minute relative to M
and MW for a long drying period, so a simplified form of the
moisture ratio can be used as expressed in Eq. (3):

M
MR = M, 3)
The drying rate (DR) of carrot slices was calculated
using Eq. (4):
_ M—Myne
DR = ~ €]

where M and M-at is moisture contents at fand #+A¢ (kg
water/kg dry matter), respectively, and tis time (min).

Statistical analysis

To analyze the data, Statistica 10.0 (StatSoft Inc.,
Tulsa, OK, USA) was utilized. The model parameters were
estimated using a non-linear regression technique, and the
fit was maximized using the Levenberg-Marquardt
technique. Three statistical criteria—the coefficient of
determination (/®?), reduced chi-square (%), and root mean
square error (RMSE)—were used to evaluate how well the
model fit the experimental data. These metrics were
calculated using specific equations, providing a
comprehensive evaluation of the models' predictive
performance by measuring the goodness-of-fit and
deviation of the predicted values from the observed data.
The aforementioned parameters were computed using the
mathematical expressions in Egs. (5), (6), and (7). These
formulas are designed to quantify the accuracy and
reliability of the model predictions. As a measure of the
model's explanatory capacity, the /2 shows the percentage
of variance in the observed data that can be explained by
the model. The ,? assesses the goodness-of-fit by
accounting for the degree of freedom, while the RMSE
quantifies the average deviation between predicted and
observed values, offering insight into the model’s predictive
precision [22].

Rz — 1 _ Zliv=1(MRexp,i_MRpre,i)2
Z?Ll(MRpre_MRexp,i)z

&)

N
2 Zi=1(MRexp,i_MRpre,i)2

x° = (6)

N—-n

2.1

1
RMSE = [ﬁ §V=1(MRpre,i - MRexp,i) ]2 7)

The experimentally observed and model-predicted
moisture ratio values are denoted by MRex and MFpre,
respectively, in these equations. Nrefers to the number of
parameters, whereas 1 indicates the total number of
experimental data points. The model with the lowest values
of RMSE and j#?; the highest A2-value indicated the best fit
for explaining the drying behaviour of the samples [23].

Assessment of effective moisture diffusivity

Internal diffusion processes primarily regulate the
moisture transfer during the lowering rate stage, which is
when the drying process usually takes place. Fick's second
rule of unsteady-state diffusion is widely used to characteri-
ze the drying kinetics in this phase for a range of materials.
This equation provides a mathematical framework that links
the concentration gradient of moisture within the material to
the rate of diffusion, allowing a comprehensive understand-
ing of how moisture transfers from the interior to the surface
during drying. By utilizing Fick's second law, researchers
can effectively model and predict the dynamics of moisture
removal, facilitating the optimization of drying processes
and improving the quality of the final product [24]:

oM
o0 =V (DegsVM) ®

When Crank [25] solved the diffusion equation (Eq. 8)
for the slab geometry, it was assumed that the initial
moisture distribution was uniform, with low external
resistance, constant diffusion, and minimal shrinkage:

8 oo 1 (2n+1)?m2D gyt
MR = ;anomexp(——ﬁ)m)

412
where nis a positive integer, L is the slab's half-thickness
in samples (m), and D« is the effective moisture diffusivity
(m?/s).

Eq. (9) can be simplified to get an approximate but
reasonable prediction of drying kinetics during the early
phases of the decreasing rate period when carrot drying is
viewed as an infinite slab geometry. Only the series'
dominating term is considered in this simplification, which
is predicated on lengthy drying times. When characterizing
the behaviour of moisture diffusion during prolonged drying
periods, this reduction offers a compromise between
computing efficiency and allowable inaccuracy [26]. The
approximate analytical solution of Eq. (9) for slab shape is
provided in Eq. (10) below, assuming a uniform starting
moisture distribution, negligible external mass transfer
resistance, and minimum shrinkage.

_ 8 2D efft
MR = — exp( e ) (10)

Slope from Eq. (11) is used to determine effective
moisture diffusivity. A linear relationship with a slope
represented by K'is obtained when the natural logarithm of
the moisture ratio (MR) is plotted versus time. From this,
Eq. (11) is derived, allowing for a precise estimation of
effective moisture diffusivity. This approach provides a
robust method for analysing the drying kinetics, as the
linearity in the plot reflects the diffusion-controlled nature of
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the moisture removal process, further enabling the
accurate quantification of diffusivity [27]:
K = %D

412

(11

Calculation of the activation energy

A modified form of the Arrhenius equation was applied
to describe the relationship between effective diffusivity and
the ratio of infrared power to sample weight. This approach
allows for the calculation of activation energy, which was
determined using Eq. (12). The adapted model provides
valuable insight into how varying infrared power levels
influence the moisture removal process, enabling more
precise control and optimization of drying conditions to
improve efficiency and product quality [28].

Degr = Doexp (_ E{;,m) (12)

In this equation, [ denotes the pre-exponential factor
(m?/s), Ea is the activation energy (W/kg), Pis the infrared
power (W), and m is the sample weight (kg), collectively
governing the dependence of effective moisture diffusivity
on power input.

Efficiency of drying process

Drying efficiency measures the effectiveness of energy
utilization in the moisture removal process during drying. It
serves as a key indicator of the performance of drying
systems, reflecting the equilibrium between energy
consumption and the rate of moisture evaporation. High
drying efficiency suggests that a substantial portion of the
input energy is efficiently used for moisture extraction,
minimizing energy wastage. Several factors, including
drying temperature, infrared power levels, air velocity, and
the intrinsic properties of the material, significantly impact
drying efficiency. Optimizing these variables is essential for
enhancing process sustainability, reducing energy con-
sumption, and lowering operational costs [29,30].

Infrared drying efficiency was calculated as the ratio of
the total heat energy provided by the drying system to the
thermal energy needed to remove the moisture from the
carrot slices. This metric provides insight into how
effectively the energy delivered by the dryer is harnessed
for the intended purpose of moisture removal, offering a
quantitative measure of energy utilization. A higher ratio
indicates greater efficiency, signifying that a larger portion
of the supplied heat is being effectively converted into latent
heat for water evaporation, rather than being lost through
other processes, such as heat dissipation to the
surroundings [31].

n= (’”WAW) x 100

e (13)
In Eq. (13), n represents the infrared drying efficiency
(%), where P is the applied infrared power (W), m,, is the
mass of evaporated water (g), and t is the drying duration
(min). The latent heat of vaporization of water (4,,), taken
as 2257 J/g, specifies the energy required for phase
transition under isothermal conditions. This formulation
provides a concise yet rigorous means of quantifying the
proportion of infrared energy effectively utilized for moisture
removal, offering a robust basis for evaluating energy

efficiency, optimizing process parameters, and advancing
sustainable drying technologies [28].

RESULTS AND DISCUSSION
Drying curves

Drying behavior of carrot slices under the infrared
method at varying power levels, as depicted in Fig. 1,
demonstrates that moisture removal rates increase with
rising infrared power. This is due to a greater moisture
concentration gradient within the carrot slices, accelerating
moisture diffusion. The higher power densities of the
halogen lamp of the infrared dryer, such as 88 W,
significantly reduce the drying time.

8

——38 W

—a—50 W

62 W

\ —e—T74 W
\ 88 W

(=)
i

M (kg water/kg dry matter)
[ ] -

0 50 100 150 200 250 300 350
Time (min.)
Figure 1. Carrot slice drying curves at different levels of infrared
power.

Since larger energy rates are applied to the material,
which results in the enlargement of both intracellular and
intercellular pores in the carrot tissue, increased infrared
power levels enable a quick decrease in the moisture
content of the carrot. This structural change enhances
water vapour diffusion from the carrot slices to the
surrounding environment, thus lowering drying time. Such
observations align with prior studies, including carrot [32],
apple [33], and lemon slices [34]. In these studies, high
drying intensities promoted structural cracking and
shortened the overall processing time by improving water
diffusion.

Fig. 2 shows the drying rate curves for carrot slices,
where no drying period at a constant rate was observed for
all experimental conditions, indicating that the drying
process occurred after a short preheating period with a
completely falling-rate period. This behaviour highlights
diffusion as the main mechanism controlling moisture
transport in carrot slices by showing a consistent drop in
moisture content over the course of the drying period. This
is in agreement with previously published studies on root
vegetables, which emphasize that moisture removal during
IR drying is predominantly governed by internal moisture
diffusion rather than surface evaporation [2]. Furthermore,
an increase in infrared power led to an elevated drying rate,
signifying that higher infrared power enhances both heat
and mass transfer, thereby accelerating water loss from the



SOYDAN AND DOYMAZ.: INFRARED DRYING OF CARROT SLICES..

Chem. Ind. Chem. Eng. Q. 32 (3)xxx—xxx (2026)

samples.
0.12
—a—38 W
0.10 ——50 W
62 W
0.08 ——T74 W
88 W

° 9o
® R

e
<}
5]

DR [kg water/(kg dry matter x min.)]

0 50 100 150 200 250 300 350
Time (min.)

o
8

Figure 2. Carrot slice drying rate curves with respect to drying time
for different IR power levels.

Initial drying rates were higher during the drying
process, but they gradually decreased as the moisture
content declined. This reduction in drying rate is likely due
to the decreased porosity of the samples, resulting from
shrinkage over time, which heightens resistance to water
migration and further slows the drying rate. This shrinkage
effect has been well documented in convective and infrared
drying studies, where tissue densification narrows capillary
pathways and lowers effective moisture diffusivity. These
findings align well with prior research on drying kinetics in
agricultural materials [35-37]. These studies similarly
identified a falling-rate period in the drying process,
attributed to structural transformations within the material
that reduce moisture diffusivity. Such structural changes
can hinder moisture migration pathways, thus decelerating
the drying rate. This phase underscores the importance of
internal structural shifts, which profoundly impact moisture
retention, drying efficiency, and overall product quality
throughout the drying cycle.

Modelling of thin-layer drying processes for carrot slices

The drying experiments' moisture content data were
transformed into moisture ratio (MR) values, as indicated in
Table 1, and these values were then applied to fit various
thin-layer drying models. Eleven distinct models were
evaluated to determine which one would be best for
forecasting sample drying times. To assess model
accuracy, statistical indices, including the A®, the x?, and
RMSE, were calculated to measure the goodness of fit, as
presented in Egs. (4), (5), and (6). The selection criterion
for the optimal model was based on the highest A*? value
combined with the lowest ¥* and RMSE values. For the
range of experiments, the models yielded A® values
between 0.988 and 1.000, RMSE values from 0.0033 to
0.0507, and x* values ranging from 0.0014 to 0.3114.
These statistical outputs provided insight into the precision
and predictive accuracy of each model.

Table 2 presents the parameter estimates for eleven
mathematical models applied to carrot slices, reflecting
variations attributable to different infrared power levels.

Each parameter estimate achieved statistical significance,
meeting or exceeding a 1% significance level, thereby
demonstrating the models' robustness and precision in
characterizing drying kinetics under diverse experimental
conditions. Notably, the Midilli & Kucuk model exhibited
superior performance relative to the other models, as
evidenced by its highest A® and lowest values for x* and
RMSE, indicating its exceptional fit and reliability in
accurately modelling the drying behaviour.

Table 1. Semi-empirical models utilized in the analysis of
carrot slice drying.

Name of Model Model Reference
Lewis MR = exp(—kt) [11]
Henderson and Pabis MR = aexp(—kt) [12]
Logarithmic MR = aexp(—kt) + ¢ [13]
Midilli and Kucuk MR = aexp(—kt™) + b [14]
Wang and Singh MR =1+ at + bt? [15]
Aghbashlo et al. MR = exp (— %tbt) [16]
Page MR = exp(—kt™) [17
Logistic MR = #p(—kt) [18]
Jena and Das MR = aexp(—kt + bVt) + ¢ [19]
Vega-Galvez | MR = exp(n + kt) [20]
Vega and Lemus MR = (a + kt)? [21]

The validity of the selected model for carrot slices dried
at various infrared power levels is confirmed by comparing
experimental moisture ratios (MR) with those predicted by
the Midilli & Kucuk model in Fig. 3. Because the data points
are precisely aligned along a 45° line, the findings show a
significant agreement between the experimental and
projected MR values, confirming the model's appli-cability
for drying behavior of samples.

Effective moisture diffusivity

Plotting the logarithm of the moisture ratio (MR)
regarding drying time at various infrared power levels was
done using the experimental data. The effective moisture
diffusivity (Der) values for each infrared power level,
computed by Eq. (11), are shown in Fig. 4. A power level of
38 W produced the lowest D« and a power level of 88 W
produced the highest D.r. These findings indicate that
higher power levels promote more effective drying of carrot
slices within the studied parameters. This is attributed to
the relatively high Dex values obtained, which suggest
enhanced moisture mobility within the samples. When the
power level rose, the impact on the D«became significantly
more apparent compared to lower power levels, as
illustrated distinctly in Fig. 4. This effect can be attributed to
the rapid temperature increase in carrot slices under high
infrared power, which raises the vapour pressure and, in
turn, accelerates the drying rate.
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Table 2 Assessment of infrared-dried carrot slices at varying power levels using statistical metrics for thin-layer drying

models.

IR Model Constants
power Model 2 b c P o =2 7 RMSE
Lewis 0.0119 0.9928 0.2123 0.0363
Henderson & Pabis 1.0803 0.0128 0.9959 0.1156 0.0231
Logarithmic 1.1049 -0.0451 0.0113 0.9975 0.3114 0.0181
Midilli & Kucuk 0.9978 0.0002 0.0032 1.2819 0.9997 0.0095 0.0062
Wang & Singh -0.0084 0.0001 0.9968 0.0957 0.0240
38 Aghbashlo et a/. 0.0092 -0.0019 0.9988 0.0110 0.0146
Page 0.0036 1.2590 0.9996 0.0379 0.0069
Logistic 1.7968 0.7754 0.0183 0.9995 0.0328 0.0067
Jena & Das -0.0905 0.3226 1.1341 0.0103 0.9982 0.1377 0.0162
Vega-Galvez | -0.0128 0.0773 0.9959 0.1156 0.0231
Vega & Lemus 0.9941 -0.0041 0.9969 0.0844 0.0226
Lewis 0.0142 0.9957 0.1071 0.0274
Henderson & Pabis 1.0572 0.0150 0.9973 0.0601 0.0187
Logarithmic 1.0714 -0.0272 0.0139 0.9980 0.1681 0.0163
Midilli & Kucuk 0.9921 0.0004 0.0050 1.2353 0.9998 0.0059 0.0050
Wang & Singh -0.0098 0.0002 0.9933 0.4931 0.0326
50 Aghbashlo et a/. 0.0118 -0.0017 0.9990 0.0889 0.0118
Page 0.0060 1.1934 0.9997 0.0514 0.0070
Logistic 2.0568 1.0470 0.0202 0.9997 0.0527 0.0064
Jena & Das -0.1197 0.3082 1.1565 0.0105 0.9979 0.1624 0.0176
Vega-Galvez | -0.0150 0.0556 0.9973 0.0601 0.0187
Vega & Lemus 0.9775 -0.0046 0.9948 0.0734 0.0283
Lewis 0.0187 0.9904 0.1842 0.0434
Henderson & Pabis 1.0724 0.0200 0.9934 0.1271 0.0360
Logarithmic 1.1481 -0.1068 0.0156 0.9978 0.1292 0.0207
Midilli & Kucuk 0.9949 -0.0006 0.0053 1.2996 0.9999 0.0014 0.0031
Wang & Singh -0.0137 0.0004 0.9993 0.0303 0.0113
62 Aghbashlo et a/. 0.0137 -0.0037 0.9994 0.0590 0.0103
Page 0.0051 1.3114 0.9998 0.0034 0.0053
Logistic 1.5462 0.5451 0.0316 0.9998 0.0036 0.0039
Jena & Das -0.0512 0.5049 1.0684 0.0211 0.9992 0.0253 0.0119
Vega-Galvez | -0.0200 0.0699 0.9934 0.1271 0.0360
Vega & Lemus 1.0025 -0.0068 0.9987 0.0907 0.0137
Lewis 0.0204 0.9915 0.1447 0.0405
Henderson & Pabis 1.0567 0.0216 0.9937 0.1117 0.0350
Logarithmic 1.1788 -0.1578 0.0155 0.9993 0.0085 0.0111
Midilli & Kucuk 0.9976 -0.0003 0.0089 1.1837 0.9999 0.0029 0.0033
Wang & Singh -0.0151 0.0005 0.9997 0.0084 0.0064
74 Aghbashlo et al. 0.0153 -0.0038 0.9998 0.0010 0.0037
Page 0.0069 1.2692 0.9993 0.0221 0.0114
Logistic 1.6152 0.6245 0.0331 0.9995 0.0169 0.0089
Jena & Das -0.0555 0.5099 1.0655 0.0222 0.9996 0.0075 0.0086
Vega-Galvez | -0.0216  0.0551 0.9937 0.1117 0.0350
Vega & Lemus 0.9957 -0.0073 0.9992 0.1405 0.0118
Lewis 0.0234 0.9876 0.1690 0.0507
Henderson & Pabis 1.0668 0.0249 0.9905 0.1302 0.0442
Logarithmic 1.2354 -0.2073 0.0166 0.9984 0.0146 0.0174
Midilli & Kucuk 0.9961 -0.0003 0.0072 1.2816 0.9998 0.0037 0.0051
Wang & Singh -0.0172 0.0007 0.9995 0.0044 0.0093
88 Aghbashlo et al. 0.0163 -0.0054 0.9997 0.0052 0.0067
Page 0.0058 1.3560 0.9993 0.0167 0.0113
Logistic 14242 0.4316 0.0422 0.9996 0.0124 0.0082
Jena & Das -0.0375 0.6307 1.0448 0.0301 0.9997 0.0079 0.0076
Vega-Galvez | -0.0249 0.0647 0.9905 0.1302 0.0442
Vega & Lemus 1.0049 -0.0086 0.9995 0.0574 0.0095
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Figure 3. Carrot slice moisture ratios, both experimental and
anticipated, at different IR power levels using the Midilli & Kucuk
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Figure 4. Effect of infrared power levels on effective diffusion
coefficient.

The Dervalues in this study ranged from 7.73x107° to
2.21x10° m?/s, which aligns with those reported for other
drying methods and agricultural products. For instance, in
laboratory-scale convective drying of peach slices, Des
values were reported to range from 9.57x10"° to 4.33x10°
® m?/s across a temperature spectrum of 40-80°C [38]. In a
similar context, the drying of okra yielded DO values
between 2.89x10° and 12.23x10° m%s at radiation
intensities of 0.167, 0.235, and 0.520 W/cm? [39]. These
comparable values reinforce the reliability of our
experimental data and confirm that the observed
diffusivities are within the expected range for plant-based
tissues under IR drying.

To provide a prediction model for comprehending Der
dynamics under various drying conditions, a multiple
regression analysis was also performed to explain the
relationship between moisture diffusivity and power level.
The correlation between the infrared power range utilized
in our experimental studies and effective moisture
diffusivity is articulated through the following equation:

Dosr = 2.86 x 10711P — 2.43 x 10710

R% = 0.988 (14)

where Prepresents the power level, measured in watts (W).
This equation can serve as a practical predictive tool for
estimating moisture transport rates in similar food matrices
under IR drying conditions, thereby assisting in the design
of energy-efficient drying protocols.

Activation energy

According to Eq. (12), the activation energy (Ea) was
determined by plotting In (De) against m/P (sample
weight/infrared power in kg/W), which is the slope of the
Arrhenius equation. Fig. 5 illustrates the relationship
between In (Des) and m/P. The slope of the line in Fig. 5
represents (-£z), while the intercept corresponds to In (Dy).
According to these findings, the Arrhenius dependence is
supported by a linear connection. The impact of the sample
weight-to-power ratio on Deris captured by Eq. (15), with
coefficients defining this relationship:

1967.5 m)

Dsr = 4.86 X 10™%exp (— b

R? = 0.999 (15)

The maximal diffusion coefficients (Dp) at infinite
temperature and the activation energy (£z) for carrot
samples were derived using a modified Arrhenius-type
exponential model, as indicated by Eq. (15). These
parameters provide insights into the diffusion behaviours
and thermal activation characteristics across the different
samples. Specifically, the highest diffusivity that any
sample may have under idealized thermal conditions is
indicated by the theoretical diffusion coefficient at infinite
temperature, or [». In contrast, £ quantifies the minimum
energy barrier required for diffusion to occur, reflecting the
sensitivity of each sample to temperature changes. By
comparing b and £Ea values, the model highlights the
unique diffusion potential and thermal resistance for each
sample, offering a detailed understanding of how each
material may respond to varying thermal environments
based on its molecular structure or composition [40].

-19.6
y =-1962.2x - 19.149
2=

20,0 R*=0.9976
3
S -20.4
E

-20.8 -

-21.2 : : .

0.0003 0.0005 0.0007 0.0009 0.0011
m/P (kg/W)

Figure 5. A relationship of the Arrhenius type between infrared
power and effective moisture diffusivity.

When Eq. (15) is analysed, [» value is determined as
4.86x10° m?s, and the £ value is determined as
1.967 kW/kg. These results, with minor variations, align
with earlier studies on the drying processes of black carrots
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[28] and orange carrots [41]. These findings underscore the
significant role of infrared power level and drying conditions
in determining the activation energy necessary for moisture
removal. The variability observed in activation energy
during food drying processes is likely influenced by several
factors, including the type of food, its moisture content, and
the specific drying methods employed.

The E: obtained in the present study (1.967 kW/kg)
aligns with previously reported power-based values for
carrots and carrot by-products. Doymaz [42] reported £s =
4.247 kW/kg for carrot slices dried at 62-125 W using a
modified Arrhenius approach, while £ = 5.73 kW/kg was
observed for carrot pomace (83-209 W) [43], and £ =
3.65 kW/kg for black carrot pomace (104-230 W) [28]. The
comparatively lower Ea reported here is justified by the use
of lower IR power levels (38-88 W) and slightly thicker
slices, which reduce power absorption per unit mass and
shift drying toward a milder thermal regime.

Experimental factors such as slice thickness, sample
mass, emitter-sample distance, initial moisture content, and
the moisture range used for fitting Ot substantially affect £a
determination. Togrul [2] and Botelho ef a/. [32] emphasize
that £ should be interpreted within the context of these
parameters, as lower IR powers generally result in slower
drying rates and a smaller driving force, leading to reduced
apparent £ in power-based models.

This study contributes to the literature by providing new
data on £s behaviour under low-to-moderate IR power
conditions—a regime that remains underexplored. The
findings are particularly relevant for industrial applications
aiming to optimize energy efficiency and minimize thermal
damage while maintaining product quality.

Energy efficiency during the process of carrot drying

Energy efficiency values were calculated using Eq.
(13), and Fig. 6 illustrates how energy efficiency varied over
the drying period for infrared drying of yellow carrot slices.
Energy efficiency was initially very high, reflecting greater
infrared power absorption. As moisture content and energy
absorption in the samples decreased, infrared power
reflection increased instead. The highest energy efficiency
was observed at an infrared power level of 88 W.

The energy efficiency of yellow carrot slices exhibited
a considerable range, varying from 0.02% to 33.1%,
corresponding to power levels between 38 W and 88 W,
indicating a significant dependence of efficiency on applied
power. These findings align with prior research conducted
on okra [44], which reported analogous trends in energy
efficiency under comparable power conditions, further
substantiating the influence of power intensity on the
energy conversion efficacy in vegetable processing. The
observed variability underscores the need for optimizing

power parameters to enhance efficiency in such
applications.
CONCLUSION

This study systematically examined the drying

behavior of carrot slices using an infrared dryer operated at
power levels ranging from 38 to 88 W. The findings

demonstrated that infrared radiation intensity exerted a
significant influence on drying kinetics, particularly on
drying time and effective moisture diffusivity. An increase in
infrared power substantially reduced the overall drying
duration by enhancing the moisture diffusion coefficient,
which varied between 7.73x107"0 and 2.21x107° m?s
across the tested power range. All drying operations
occurred within the falling-rate period, confirming that the
moisture removal process was predominantly governed by
internal diffusion mechanisms rather than surface evapo-
ration. Among the mathematical models evaluated, the
Midilli & Kucuk model exhibited the highest predictive
accuracy, effectively characterizing the drying kinetics
under various infrared power conditions.

35
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Figure 6. The change of energy efficiency (%,) with respect to the
Iinfrared power level.

The activation energy, calculated using an Arrhenius-
type relationship, was determined to be 1.967 kWi/kg,
representing the energy barrier for moisture diffusion.
Although higher infrared power promoted accelerated
moisture removal during the initial drying stages, prolonged
exposure resulted in diminished energy efficiency due to
the gradual reduction of the moisture gradient between the
sample and the surrounding air, thereby lowering the
driving force for mass transfer. These results emphasize
the significance of defining infrared drying parameters
through comprehensive kinetic modeling and energy
performance evaluation rather than relying solely on
process rate enhancement. The strong correlation between
experimental data and the Midilli & Kucuk model under-
scores its applicability as a reliable predictive framework for
process design and scale-up in infrared drying systems.
Future investigations should integrate kinetic modeling with
detailed energy analysis to further elucidate the relation-
ship between power input, mass transfer behavior, and
energy utilization efficiency, ultimately advancing the
development of optimized, sustainable infrared drying
technologies. Overall, the findings provide a valuable
contribution to the understanding of infrared drying
mechanisms, supporting the design of faster and more
energy-efficient dehydration processes while maintaining
desirable product characteristics.
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LIST OF SYMBOLS

Dv: Pre-exponential factor in Arrhenius equation (m?/s)
Des: Effective diffusivity (m?/s)

Ea: Activation energy (W/kg)

K Slope

L: Half the slice thickness of the sample

M: Moisture content (kg water/kg dry matter)

Mo: Initial moisture content (kg water/kg dry matter)
Mu: Dry weight (kg)

Me: Equilibrium moisture content (kg water/kg dry)
MRexp: Experimental moisture ratio

MRure: Predicted moisture ratio

M: Moisture content at any time (kg water/kg dry matter)
M+ar: Moisture content at t+At

mw: Mass of evaporated water (g)

Mw: Sample weight (kg)

. Number of experimental data points

M Number of parameters

P Infrared power (W)

R: Coefficient of determination

At Drying time (min.)

n: Drying efficiency

Aw: Latent heat of vaporization

X: Chi-square

ABBREVIATIONS

AOAC: Association of Official Agricultural Chemists
LDPE: Low-density polyethylene

MR: Moisture ratio

DR: Drying rate (kg water/kg dry matter * time)
RMSE: Estimated standard error

US: Ultrasound

HD: Hot air drying

MWD: Microwave drying

INFD: Infrared drying
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NAUCNI RAD

INFRACRVENO SUSENJE KRISKI SARGAREPE: UTICAJ
NIVOA SNAGE NA KINETIKU | ENERGETSKU
EFIKASNOST

Cilf ove studije je optimizacija uslova susenja Zute Sargarepe IstraZivanjem
efekata razlicitih nivoa snage infracrvenog (IC) zracenja na kinetiku susenja.
Nakon testova susenja na nivoima snage IC zracenja od 38, 50, 62, 7488 W,
pocetni sadrZaj viage u kriskama sargarepe (6,95 kg vode/kg suve materife)
smanjen je na 0,11 kg vode/kg suve materife. Vremena susenja kretala su se
od 300 minuta pri 38 W do 110 minuta pri 88 W, sto pokazuje obrnutu vezu
izmedu snage IC zracenja i trajanja susenja. Visi nivoi snage IC zracenja
ubrzali su susenje poboljSanfem prenosa energife, Sto je podstaklo efikasnost
uklanjanja viage. Efektivni koeficijenti difuzije, izracunati u rasponu od
7.73x107 do 221x10° m%s za nivoe snage od 38 W do 88 W, ukazuju na
povecanje migracije vliage sa vecom snagom. Energetske potrebe procesa
odraZene su u energiji aktivacife za difuziju viage (1,967 kWikg). Model Midilija
[ Kucuka ponudio je nafbolje resenje za karakterizaciju ponasanja susenja, a
statisticka analiza je potvrdila ispravnost modela. Ovi nalazi pruZaju vredne
uvide za optimizaciju uslova infracrvenog susenja kako bi se poboljSala
efikasnost i kvalitet procesa susenja Zute Sargarepe.

Kiljucne reci: Infracrveno susenje, matematicko modelovanje, kinetika
susenya, koeficijent difuzije, energija aktivacije.
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