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¢ Production via fossil-based materials is not * Obtained by the hydrogenation of the
economically competitive aldehyde group in furfural

e Precursor of more than 80 furan-based *  About 65% of all furfural produced is directed
chemicals and solvents towards obtaining furfuryl alcohol

* Applications: selective solvent for aromatics * Application: production of furan resins, with
and unsaturated molecules; used in excellent chemical, thermal and mechanical
transportation, pharmaceutical and properties, as well as resistance to corrosion
agrochemical industries and to solvent action

* Common reactions: hydrogenation, * Industrial synthesis with a copper-chromite
decarbonylation and hydrodeoxygenation /\ catalyst, which is toxic and deactivating /

Fig. S1 - Most common furfural conversion routes and main information about furfural and

furfuryl alcohol.
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Fig. S2 - SEM images for Nb2Os (a), 5% Ni/Nb2Os (b), 10% Ni/Nb2Os (¢) and 15% Ni/Nb2Os (d).
SEM conditions: electrical current of 100 pA and 20 kV, with 25 mm focus (magnification
1000x).
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Fig. S3 - Isotherm plots obtained in N> physisorption for Nb2Os (a), 5% Ni/Nb2Os (b), 10%
Ni/Nb2Os (¢) and 15% Ni/Nb2Os (d). N2 physisorption conditions: -196°C, samples pretreated

under vacuum at 200°C for 12 hours.



Table S1 — Ni catalysts applied in furfural hydrogenation to furfuryl alcohol previously reported in the literature.

Temperature H» pressure Time Furfural Furfuryl alcohol
Reference Catalyst Solvent
(°O) (MPa) (h) conversion (%)  selectivity (%)
This work Ni/Nb20Os 150 5 2-propanol 5 47 60-80
[1] Ni/SiO; 100 1 2-propanol 8 31 76
[2] Ni/Fe;03 180 CTH 2-propanol 7.5 46 72
[3] Ni/SiO; 110 3 2-propanol 3 99.5 50.3
[4] Ni/CN 200 1.3 2-propanol 5 100 75
[5] NVVAC 200 3 2-propanol 5 85 6
[6] Ni/R-Ca 140 CTH ethanol 4 39.9 58.2
[7] Ni-MFC-400 160 2 methanol 4 92.3 59.3
[8] Nio.15/Al,03-C-400 160 4 ethanol 6 55.5 85.8
[9] Ni@CG 150 0.5 2-propanol 5 19 29
[10] Ni@OMC 180 3 2-propanol 12 51 92
[11] Ni/bentonite 150 2.5 2-propanol 15 100 70
[12] Ni/CL 160 3 ethanol 2 100 51
[13] Ni/Ti0»-350 120 2 water 4 85.2 64.2
[14] Ni/HNPC 110 2 2-propanol 4 95.2 94.8
[15] Ni/TiO»-A2 50 2 methanol 2 65.7 66.7
[16] Ni/Ti0»-400-350R 140 2 2-propanol 6 80 85
[17] Ni/y-AlL O3 150 CTH 2-propanol 2 98 27
[18] Ni/hydrotalcite 140 5 water 4 45 98
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Fig. S4 - Conversion of furfural obtained with catalyst 10% Ni/Nb,Os in three consecutive
cycles. Reaction conditions: 5 MPa of H», 150°C, agitation of 1000 rpm, 300 mg of catalyst.
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Fig. S5 - Selectivity to furfuryl alcohol and difurfuryl ether with catalyst 10% Ni/Nb2Os in

three consecutive cycles. Reaction conditions: 5 MPa of Hz, 150°C, agitation of 1000 rpm,

300 mg of catalyst.
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Fig. S6 - Conversion of furfural obtained with catalyst 10% Ni/Nb,Os in ten hours. Reaction
conditions: 5 MPa of H», 150°C, agitation of 1000 rpm, 300 mg of catalyst.
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Fig. S7 - Selectivity to furfuryl alcohol and difurfuryl ether with catalyst 10% Ni/Nb2Os in ten
hours. Reaction conditions: 5 MPa of Hz, 150°C, agitation of 1000 rpm, 300 mg of catalyst.
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