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Article Highlights  

• Sensitivity analysis of gasification kinetics of different feedstocks was performed in 

Aspen Plus 

• Process parameters and feedstock impact on efficiency and syngas composition are 
analyzed 

• Obtained results are used for ANN development and modeling with high accuracy 

• Process parameters optimization studies regarding syngas content are performed 

 
Abstract  

Entrained flow gasification is a well-established technology, however, the 

main obstacle in process design is the complex gasification mechanism, 

since numerous phenomena at extreme process conditions take place 

simultaneously. This study is focused on integrated thermodynamic and 

artificial neural network approach (ANN) for entrained flow gasification 

kinetics investigation. Data on 102 feedstock materials composition was 

used in the AspenPlus gasification simulation, where sensitivity analysis 

was performed for different equivalence ratios (0.1—0.7) and gasification 

temperature (1200—1500°C) values. For analyzed materials, an optimal 

equivalence ratio range exists (usually 0.3—0.4), maximizing gasification 

efficiency. The obtained results were used in ANN development for each 

output variable (syngas composition, efficiency, heating value, and carbon 

conversion). Matlab algorithm was used for the determination of the optimal 

number of neurons (1—20 range) in each ANN. High R2 values (>0.99) for all 

models suggested good agreement between simulated and predicted 

values. Genetic algorithm-based optimization studies for maximization of 

hydrogen content and cold gas efficiency result in mean ER values of 0.35 

and 0.41, respectively, at a temperature of 1200 °C. Yoon interpretation 

method was used for quantifying the relative impacts of each input variable 

on syngas content and gasification efficiency. The proposed approach 

represents a powerful tool that can facilitate the investigation of the 

entrained flow gasification and process design. 

Keywords: syngas; optimization; simulation; machine learning. 
 

Global energy production, despite an increase in 

renewable energy sources consumption, is still  
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dominated by fossil fuels. Approximately one-third of 

global electricity production in 2022 came from 

renewable energy sources, while their share in total 

energy consumption is even lower, approaching 20% 

[1,2]. Taking into account the non-renewable nature of 

fossil fuels and intensive greenhouse gas and pollutant 

emissions, the energy industry is expected to shift 

towards cleaner energy sources (solar, wind, hydro, 

geothermal, biomass, etc.) [3], which is recognized and 

controlled by global policies [4,5]. Thus, a serious effort 

is made to develop new and improve the existing 

energy conversion technologies. 

http://www.ache.org.rs/CICEQ
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Thermochemical conversion technologies consist 

of the conversion of carbonaceous feedstocks into 

liquid, solid, or gaseous products for further production 

of electricity, heat, chemicals, or fuels. Among the 

conventional thermochemical conversion technologies 

(combustion, gasification, and pyrolysis) [6], 

gasification offers benefits in terms of high conversion 

efficiency [7], achievable carbon capture and cleanup 

of produced gas (syngas) [8], as well as polygenerative 

potential due to specific syngas composition [9]. The 

process consists of partial oxidation of carbon in the 

fuel in the presence of a gasifying agent, such as 

oxygen, air, air-oxygen mixture, steam, steam-oxygen 

mixture, or carbon dioxide. Produced syngas consist 

mainly of carbon monoxide, hydrogen, methane, 

carbon dioxide, and water. The solid residue consists 

of ash and an unconverted organic fraction of the fuel 

[10,11]. Overall reacting system is endothermic, where 

necessary energy can be provided by partial oxidation 

(auto-thermal gasification) or by external supply of 

energy (allo-thermal gasification). Considering the 

auto-thermal system, gasification can be seen as a 

sequence of three stages: drying, decomposition 

(devolatilization), and gasification. Overall process 

output depends on several factors, including operating 

conditions (temperature and pressure), amount and 

type of gasifying agent, feedstock composition, and 

gasification technology [11,12].  

Several gasification technologies have been 

developed in recent years, which differ in operating 

conditions, feedstock material state, capacity, 

efficiency, and scale-up potential. Within the currently 

available gasification technologies, such as fixed bed 

and fluidized bed, entrained flow gasifiers constitute an 

interesting option owing to their commercial large-scale 

availability (technological readiness index of around  

7—8), lower emissions, and their high efficiency for the 

production of syngas [13,14]. Complex construction 

and operation, problems with construction materials at 

high temperatures, as well as fuel specificity in terms of 

particle size, are compensated by high conversion 

efficiency, high capacity, good gas-solid contact and 

mixing, moderate heating value syngas, and great 

scale-up potential. Typical entrained flow gasification 

(EFG) temperature is above ash melting point, typically 

in the range of 1200—1500 °C, while gasification 

pressure is usually above 25 bar [13,15,16].  

To develop and design gasification processes, a 

detailed investigation of process kinetics must be done, 

which helps determine the impact of operating 

conditions and feedstock material composition on outlet 

parameters, i.e., carbon conversion, syngas yield, and 

syngas composition. Thus, several different 

gasification models have been developed, which can 

be divided into kinetic rate models, thermodynamic 

equilibrium models, and neural network models [15]. 

Kinetic models provide essential information on kinetic 

mechanisms to describe the conversion during 

biomass gasification. Several studies that include 

kinetic models have been made, taking into account 

gasification reactions, heat and mass transfer, and fluid 

dynamics in EFG [17—24]. Thermodynamic equilibrium 

models are independent of gasifier design and may be 

more suitable for process studies on the influence of the 

most important process parameters. Additionally, this 

model requires fewer details of the system in hand. 

Thus, stoichiometric and non-stoichiometric equilibrium 

models have extensively been used for gasification 

purposes [25—29], especially in the domain of EFG, 

since the system approaches thermodynamic 

equilibrium at higher temperatures [15,30]. 

Furthermore, this approach is often implemented in 

Aspen Plus simulation software, which has become a 

standard procedure for the simulation and investigation 

of the gasification process. The software enables 

equilibrium calculations through Gibbs free energy 

minimization [30]. Artificial neural networks (ANN) have 

recently been successfully used in various areas of 

chemical engineering research. The concept of ANN 

allows for black-box modeling of large amounts of data, 

which can be useful in phenomenologically complex 

processes, such as EFG and gasification in general. 

Therefore, several types of research using ANN have 

been conducted to evaluate the performance of various 

gasification systems [31], optimize a given gasification 

process for hydrogen production [32], model biomass 

gasification in fluidized bed gasifiers [33] and fixed bed 

downdraft gasifiers [34], predict biomass gasification 

process parameters [35] and develop a comprehensive 

gasification model, taking into account wide range of 

inlet and outlet parameters [36]. Also, some studies 

have developed an integrated thermodynamic 

equilibrium and ANN approach, which uses equilibrium 

calculation results as ANN input data, while a single 

output variable is considered, mainly syngas heating 

value [37] and net energy output [38].  

By using simulation software like Aspen Plus, a 

thermodynamic equilibrium approach can be applied 

for the gasification of different feedstock materials at 

different operating conditions. Thus, obtained data on 

syngas composition can be used for the development 

of ANN, which will take into account feedstock 

composition, gasifying agent type, and flowrate, as well 

as operating conditions, and provide outputs in the form 

of syngas composition, gasification efficiency, etc. This 

approach can be beneficial on multiple levels, since 

only obtained ANN models are necessary for the 

evaluation of gasification performance, thus providing a 

tool for engineers for preliminary assessment of 

potential plant efficiency, gasification operation 
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feasibility, and necessary operating conditions. Also, 

gasification kinetics for a given material can be 

assessed without the use of a process simulator, while 

a comparative analysis of the behavior of different 

feedstock materials can be performed.  

It is worth mentioning that there is ongoing 

research and development in the field of gasification, 

and new and innovative technologies are emerging that 

could potentially surpass EFG in terms of efficiency and 

cost-effectiveness [39—41]. Nonetheless, EFG remains 

one of the most promising and widely used gasification 

technologies at present. Therefore, the goal of this 

research is to investigate in detail the kinetics of the 

EFG process via an integrated ANN and 

thermodynamic equilibrium approach. To obtain 

representative data on EFG, numerous different 

feedstock materials have been investigated, whose 

composition is taken from the literature and used as an 

input in Aspen Plus gasification simulation. Typical 

oxyfuel gasification process flowsheet configuration 

was used, while sensitivity analysis was performed for 

all samples, with equivalence ratio and gasification 

temperature as parameters to be varied. Obtained 

results are used as input data for ANN development 

using a Matlab algorithm for network topology 

optimization. Obtained models for the prediction of 

output variables (syngas composition, cold gas 

efficiency, carbon conversion, and syngas LHV) are 

further used for developing the objective function for 

optimization via the genetic algorithm method. The 

objective function uses equivalence ratio and 

temperature as decision variables and parameters of 

interest as target variables, thus allowing for quick 

determination of optimal process parameters for a 

given feedstock material. 

 
 
MATERIALS AND METHODS 

Feedstock material data 

To develop a comprehensive gasification model, 

a wide range of input parameters is necessary. Since 

gasification is suitable for a relatively broad spectrum of 

raw materials, data on various feedstock material types’ 

composition is obtained from the literature. The general 

idea is to obtain data on proximate and ultimate 

analysis for materials of different origins and heating 

values, providing the necessary range of individual 

component composition. Data on proximate and 

ultimate analysis is obtained for 40 municipal solid 

waste (MSW) and refuse-derived fuel (RDF) samples, 

39 biomass samples, 10 coal samples, and 13 biomass 

briquettes samples. Complete input data is given in 

Supplementary material, Table S1. Since further 

calculations require the data on materials' lower 

heating value (LHV), for instances where only a higher 

heating value (HHV) is given, necessary conversion is 

made according to Eq. (1) [42]: 

MJ
LHV HHV H Moisture

kg
(9 ) 2.44  

 
= −  +   

 

  (1) 

where H and Moisture stand for hydrogen and moisture 

content, respectively 

Process simulation and sensitivity analysis 

Gasification process simulation is performed in 

Aspen Plus software. Raw material composition data is 

used in the definition of nonconventional components, 

with HCOALGEN and DCOALIGT models being used 

for enthalpy and density calculations. Peng-Robinson 

equation of state was used as a thermodynamic model. 

Defined components consist of nonconventional 

components (raw material and ash), decomposition 

products (C, H2, N2, H2O, S, Cl2, O2), and possible 

syngas components (CH4, CO, CO2, NO, NH3, HCl, 

H2S, C2H6). A typical gasification process flowsheet 

(Figure 1) is developed, where feedstock material 

(FEEDSTOCK) first enters the decomposition 

(DECOMP - Ryield) reactor, where drying and 

devolatilization processes take place at 500 °C and 

gasification pressure of 25 bar. Then, the mixture 

enters the gasification reactor (GASIFIER - RGibbs), 

along with pure oxygen (O2-GASIF), which enters the 

reactor at 200 °C and 25 bar. In the gasifier, restricted 

chemical equilibrium calculations take place at the 

selected gasification temperature, while the heat 

required for decomposition (Q) is provided from this 

reactor. Obtained products are sent to a separator 

block (SEPARATOR), where unconverted carbon and 

ash are removed (SLAG), thus simulating the formation 

of slag in the gasifier. 

 
Figure 1. Aspen Plus gasification process flowsheet. 

For the determination of the necessary oxygen 

flow rate for each simulation, equivalence ratio (ER) 

was used, while all calculations were performed in a 

Calculator block. The equivalence ratio for oxyfuel 

gasification is defined as: 

st

O F
ER

O F

( / )

( / )
=     (2) 

where O/F stands for the actual ratio of oxygen to fuel, 
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while (𝑂/𝐹)𝑠𝑡 stands for the stoichiometric ratio. 

Sensitivity analysis was performed for every raw 

material, with ER and gasification temperature being 

the parameters to be varied. Temperature was varied 

in the range of 1200 °C to 1500 °C, with 15 °C 

increments, while ER was varied in the range of 0.1 to 

0.7, with 0.03 increments. A defined flowsheet 

configuration is set for the autothermal gasification 

regime; if the gasification reactor provides insufficient 

heat for decomposition (for example, when ER is too 

low, or when the material has a low heating value), the 

error is reported, and these results were not taken into 

consideration. Simulation results include the content of 

main syngas components (CO, H2, CO2, CH4, and 

H2O), while obtained data is used for the calculation of 

syngas LHV, carbon conversion, and cold gas 

efficiency (CGE). Carbon conversion and CGE are 

calculated from the following equations: 

c in c out

c in

m m
CONV

m

, ,

,

100(%)
−

=     (3) 

syngas syngas

f f

m LHV
CGE

m LHV
100(%)


= 


   (4) 

where mc,in and mc,out stand for carbon flow rate at 

gasifier inlet and outlet, msyngas and mf stand for syngas 

and feedstock mass flowrate, and LHVsyngas and LHVf 

stand for syngas and feedstock LHV, respectively. 

Artificial neural network modeling and optimization 

Sensitivity analysis results are used as input data 

for the development of ANN for prediction of output 

parameters. MatLab’s Neural Network Toolbox was 

used for the design of the neural network structure. A 

standard structure with one hidden layer was used, with 

a linear transfer function at the output layer and a 

tangent sigmoid function at the hidden layer. An 

algorithm was developed for the determination of the 

most suitable number of neurons in a hidden layer. The 

number of hidden neurons varied from 1 to 20, and the 

training process of each network was run 10 times with 

random initial values of weights and biases. The best 

topology was determined according to the coefficient of 

determination (R2), Mean squared error (MSE), and 

mean absolute percentage error (MAPE) values.   

Bayesian regularization backpropagation algorithm 

was used for network training, where 60% of the data 

was used as training data, 20% as validation data, and 

20% as test data. Each network consists of multiple 

inputs (ultimate analysis of feedstock material, moisture 

content, ER, and temperature) and singular output 

(syngas content of a selected component (CH4, CO2, 

CO, H2, H2O), syngas LHV, CGE or carbon 

conversion). Hence, 8 independent ANNs were 

developed. 

Obtained functions are later used for process 

optimization for a given condition using a genetic 

algorithm function. As a result of the optimization 

procedure for a given feedstock material composition, 

the algorithm returns values for ER and gasification 

temperature. Therefore, the algorithm can be used for 

various problems, for example, in the maximization or 

minimization of specific component content in syngas, 

in adjusting of components ratio in syngas, in 

maximization of CGE, syngas heating value, or carbon 

conversion. 

 
 
RESULTS AND DISCUSSION 

Characteristics of investigated feedstock materials 

As stated previously, materials of different origins 

were used in this study, to cover a wide range of 

elemental components compositions. It should be 

mentioned that some of the materials were completely 

unsuitable for the gasification process since the 

simulation reported errors for every combination of ER 

and temperature in sensitivity analysis. This is mainly 

due to high moisture content and low LHV value, which 

is typical for some MSW and biomass samples. The 

general characteristics of feedstock material which 

were suitable for gasification simulation are shown in 

Figure 2. It should be noted that the box plot for the 

chlorine content was not displayed due to its low 

content in all materials. Also, outliers in LHV, carbon, 

and sulfur content data correspond to coal samples 

used in this study. 

 
Figure 2. Box-plot representation of feedstock materials 

composition and LHV taken from literature; db stands for dry-

basis composition. 

Impact of operating conditions on entrained flow 
gasification 

To analyze and discuss the relative impact of 

main operating conditions, ER, and temperature on the  
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oxyfuel EFG process, the results of a sensitivity study 

on a randomly selected feedstock material will be 

displayed. Surface plots for selected output 

parameters, mainly syngas composition and overall 

gasification parameters, are displayed in Figures 3 and 

4. According to plots displayed in Figure 3, a nonlinear 

correlation between syngas composition and operating 

conditions can be observed. A crucial observation is 

that there is a distinctive range of operating parameter 

values for which H2 and CO content are at maximum. 

 

 
Figure 3. Dry-basis: (a) H2 content, (b) CH4 content, (c) CO content, (d) CO2 content in syngas as a function of ER and gasification 

temperature. 

 

Hydrogen content reaches maximum values in 

the ER range of 0.33—0.4 (Figure 3a), while lower 

temperatures favor hydrogen content increase. 

Maximum CO content is obtained in a similar ER range 

(Figure 3c), while a further increase of ER value slightly 

decreases CO content, with similar conclusions about 

temperature influence to be made. It can be assumed 

that the dominant reactions in the selected operating 

conditions range are partial oxidation and water-gas 

reactions. Methane content is significant at lower ER 

values (Figure 3b), where methanation and 

hydrogasification reactions are dominant. Methane and 

CO2 content decrease with an increase of ER (Figures 

3b and 3d), with a sharp decrease being in line with the 

area of maximum H2/CO values. 

Overall gasification efficiency is strongly 

dependent on the content of main syngas components, 

H2 and CO, due to their high heating values. Cold gas 

efficiency increases with an increase in ER, with 

maximum CGE values being in the ER range of  

0.33—0.4 and lower temperature area (Figure 4b). 

Complete carbon conversion is obtained after the 0.35 

ER threshold, for all temperatures (Figure 4c). In 

general, higher gasification temperatures lower the 

conversion and CGE, due to the increase of necessary 

mixture sensible heat. It could be noted that the optimal 

operating conditions ensure complete carbon 

conversion with minimal consumption of gasifying 

agents. Syngas LHV follows a similar pattern, with the 

main difference being a significant decrease in high ER 

area (Figure 4a). However, higher ER results in higher 

overall gas yield, which explains the slight decrease in 

CGE values (Eq. (4) and Figure 4b). 

Gasification kinetics in general is complex since 

the process takes place via a series of elementary 

reactions. However, it is stated in the literature that few 

global reactions, including only key components and 

interproducts, can be used for modeling purposes. 

Those reactions are given in Table 1 [43]. 

Table 1. Main gasification reactions. 

Stoichiometry Name 

Char combustion  
C+1/2O2→CO Partial combustion 
C+O2→CO2 Complete combustion 
Char gasification  
C+CO2→2CO Boudouard reaction 
C+H2O→CO+H2 Steam gasification 
C+2H2→CH4 H2 gasification 
Homogenous  
CO+1/2O2→CO2 CO oxidation 
H2+1/2O2→H2O H2 oxidation 
CH4+2O2→CO2+2H2O CH4 oxidation 
CO+H2O→CO2+H2 Water-gas shift 

Simulation results indicate that high hydrogen 

content corresponds to low water content in syngas, 

which can be attributed to the water-gas shift reaction, 

as well as the steam gasification reaction, where 

carbon is gasified with water vapor. At the area of 

complete carbon conversion, carbon gasification and 

oxidation no longer take place, which also causes 

hydrogen not to form via steam gasification reaction.  



244 

BALABAN et al.: INTEGRATED NEURAL NETWORK AND ASPEN PLUS… Chem. Ind. Chem. Eng. Q. 31 (3) 239−248 (2025) 
 

 

 

 
Figure 4. Overall gasification parameters, (a) syngas LHV, (b) CGE, (c) carbon conversion as a function of ER and gasification temperature. 

 

Boudouard reaction is one of the most important 

reactions in the entire gasification mechanism, where 

carbon reacts with CO2 while forming CO. This explains 

the decrease of CO content in the area of higher ER. At 

complete carbon conversion, the system stabilizes and 

no significant composition changes take place. Only 

homogenous reactions take place, primarily water-gas 

shift, while temperature and approximately equilibrium 

composition prohibit further reaction advancement. 

Also, it is important to highlight that methane and other 

hydrocarbons decompose at higher temperatures [13], 

which is why the obtained methane content is low. 

Artificial neural networks 

One neural network was developed for each 

output variable via the algorithm described in Materials 

and Methods. It should be noted that after initial runs, 

the number of input parameters decreases since 

chlorine and nitrogen contents in feedstock materials 

are very low and their impact on output variables should 

be negligible (due to the small quantity and inert nature 

of their gasification products). Likewise, ash is inert in 

the gasification process, thus, its impact is also 

neglected, resulting in 7 input parameters (carbon, 

hydrogen, oxygen, sulfur, and moisture contents, and 

ER and gasification temperature) for each output 

parameter. ANN performance and topology are shown 

in Table 2, while parity plots of some predicted and 

simulated values are shown in Figure 5. The remaining 

parity plots are given in Supplementary material, 

Figure S1. 

The number of hidden neurons increases the 

prediction accuracy since the optimal number of 

neurons was close to 20, while coefficients of 

determination values were above 0.99 for all instances. 

The impact of hidden neurons’ number on the 

coefficient of determination for each neural network is 

given in Supplementary material, Figures S2 and S3. 

High accuracy is also confirmed by low MSE and MAPE 

values. It should be noted that simulated values of 

certain values are close to zero for a wide range of 

operating parameters, thus resulting in a relatively high 

MAPE value, even though overall prediction accuracy 

is high. 

Table 2. Artificial neural network structure and prediction 

accuracy. 

Each output 
neuron 

Hidden 
neurons 

R2 
MAPE 

% 
MSE 

H2 19 0.9938 4.3858 4.7553·10-5 
CO 19 0.9988 13.6318 4.4521·10-5 
CH4 19 0.9987 60.3509 2.74339·10-6 
CO2 20 0.9968 16.8125 2.9776·10-5 
H2O 20 0.9984 7.0330 6.6187·10-5 
Syngas LHV 20 0.9997 0.4967 0.0035 
CGE 20 0.9989 1.3559 0.6355 
Carbon 
conversion 

20 0.9994 0.2970 0.1951 

To quantify the impact of input variables on 

syngas composition and overall gasification 

parameters, Yoon’s interpretation method was used 

[44]. Obtained results are displayed in Table 3. It can 

be noted that the equivalence ratio has a higher 

general impact on syngas composition and overall 

gasification efficiency than temperature, while carbon 

and moisture content impact the syngas composition 

the most. Results on the relative importance of ER and 

gasification temperature are in line with sensitivity 

analysis results displayed previously. 

Since developed neural network models show 
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Figure 5. Simulated and predicted data on (a) H2 content, (b) CO content, (c) syngas LHV, and (d) CGE, according to the developed 

ANN model. 

Table 3. The relative impact of input parameters on output parameters in the EFG process. 

 ER T, °C C H O Moisture 

H2 38.0±12.5 -4.3±0.5 13.6±2.8 1.6±6.4 6.3±9.1 -17.4±4.5 
CO 38.7±7.2 -3.8±0.6 11.5±4.2 3.0±7.8 4.0±3.8 -15.3±8.5 
CH4 -49.9±6.2 4.3±0.5 -12.4±1.6 5.7±2.7 -1.6±2.5 10.1±5.6 
CO2 -21.2±6.7 3.8±1.0 -7.5±7.8 -9.7±5.0 2.1±7.2 12.0±8.6 
H2O -36.1±8.4 4.1±0.6 -16.3±4.3 -2.8±4.9 -2.0±4.4 23.3±3.1 
Syngas LHV, MJ/kg 7.7±11.3 -3.6±0.9 4.5±4.4 20.0±5.0 -2.7±4.9 -14.3±6.6 
CGE, % 4.2±5.3 -0.6±0.8 9.4±5.5 -9.7±17.3 -3.9±11.8 -7.1±6.6 
Carbon conversion, 
% 

39.7±7.4 -1.7±0.6 -1.3±2.9 7.5±4.1 9.5±3.7 9.3±5.3 

 

good agreement between simulated and predicted 

data, they could be further used for optimization 

purposes. Two optimization problems were tested; 

obtaining the maximum hydrogen fraction in syngas 

and obtaining of maximum CGE for a given feedstock 

material. A genetic algorithm was used for optimization 

on each feedstock material, with ER and gasification 

temperature as output parameters. Parity plots on 

simulated (based on sensitivity analysis results) and 

predicted (optimization) hydrogen fraction and CGE are 

shown in Figure 6. 

 
Figure 6. Predicted and simulated; (a) H2 content and (b) CGE according to optimization procedure. 
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The obtained optimization results are in 

accordance with sensitivity analysis results. It should 

be noted that ER and temperature are in this case 

continuous variables, contrary to sensitivity analysis, 

which could lead to slight deviation of results. 

Temperatures corresponding to optimal operating 

conditions are close to the minimal gasification 

temperature of 1200 °C, while mean ER values are 0.35 

for hydrogen optimization and 0.41 for CGE 

optimization. 

In general, this approach contributes to a better 

understanding of EFG process kinetics, while 

developed ANN models can be used for quick 

prediction of gasification output parameters for a given 

feedstock. Obtained syngas composition can be further 

used to facilitate gasification-based process simulation 

since complex three-phase calculations are bypassed. 

Also, models can be used for process optimization i.e. 

obtaining the optimal operating conditions for a 

specified goal. 

 
 
CONCLUSION 

 
An integrated ANN and Aspen Plus gasification 

model was used for the investigation of entrained flow 

gasification kinetics. Various feedstock materials, 

mainly waste, RDF, coal, and biomass were used to 

obtain a wide range of input material elemental 

compositions. For each feedstock material, sensitivity 

analysis on EFG in Aspen Plus was performed, for 

different equivalence ratios and temperatures, and 

obtained results were used in ANN development. 

Single layer ANNs with an adjustable number of 

neurons were developed for every output variable 

(syngas components fractions, cold gas efficiency, 

syngas lower heating value, and carbon conversion), 

with high prediction accuracy (R2>0.99). All models 

consist of a high number of hidden neurons (19—20). 

Also, the general impact of ER and temperature, as well 

as feedstock material composition on output 

parameters was determined and discussed. The 

highest gasification efficiencies are obtained at lower 

temperatures, just above ash melting temperatures, 

and in a narrow range of ER, typically 0.35—0.45, 

depending on feedstock material composition. In this 

ER range, the highest H2 content and moderate CO 

content are obtained, resulting in the highest syngas 

heating value. Further increase of ER does not have a 

significant effect on syngas composition. Obtained 

models can be used for optimization problems, where 

two desired goals were successfully tested; 

determination of optimal combination of ER and 

temperature for maximization of syngas hydrogen 

content and cold gas efficiency. For investigated 

materials, mean optimal parameters are temperature of 

1200 °C and ER of 0.41 and 0.35 for cold gas efficiency 

and hydrogen content, respectively. This combined 

ANN and simulation approach allows for quick and 

accurate prediction of EFG efficiency and syngas 

composition, thus providing essential information for 

the design and development of gasification processes. 
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NAUČNI RAD 

INTEGRISANI MODEL ZASNOVAN NA 
NEURONSKIM MREŽAMA I ASPENPLUS 
SOFTVERU ZA ISPITIVANJE KINETIKE 
GASIFIKACIJE U ZAHVAĆENOM TOKU ČESTICA 

 
Gasifikacija u zahvaćenom toku čestica predstavlja razvijenu tehnologiju, međutim, 

glavna prepreka u projektovanju procesa je složen mehanizam gasifikacije, s obzirom da 

se više fenomena na ekstremnim procesnim uslovima odvija istovremeno. Ova studija je 

fokusirana na integrisani pristup pomoću termodinamike i veštačkih neuronskih mreža 

(ANN) za ispitivanje kinetike gasifikacije u zahvaćenom toku čestica. Podaci o 102 

sastava sirovina su korišteni za simulaciju gasifikacije u AspenPlus softveru, gde je 

analiza osetljivosti izvršena za različite ekvivalentne odnose (0.1—0.7) i gasifikacione 

temperature (1200—1500 °C). Za analizirane sirovine postoji optimalni opseg 

ekvivalentnog odnosa (obično 0.3—0.4), čime se maksimizije efikasnost gasifikacije. 

Dobijeni rezultati su korišteni za razvoj ANN za svaku izlaznu promenljivu (sastav 

singasa, efikasnost, toplotna moć i konverzija ugljenika). Matlab algoritam je korišten za 

određivanje optimalnog broja neurona (u opsegu od 1—20) za svaku ANN. Visoka 

vrednost R2 (>0.99) za sve modele ukazuje na dobro poklapanje između simuliranih i 

predviđenih vrednosti. Optimizacione studije bazirane na genetičkom algoritmu za 

maksimizaciju sadržaja vodonika i hladne efikasnosti gasa rezultuju srednjim ER 

vrednostima od 0.35 i 0.41, respektivno, na temperaturi od 1200 °C. Yoon-ova metoda 

interpretacije je korištena za kvantifikaciju relativnih uticaja svake ulazne promenljive na 

sadržaj singasa i efikasnost gasifikacije. Predloženi pristup predstavlja moćan alat koji 

može da ubrza istraživanje procesa gasifikacije u zahvaćenom toku čestica i 

projektovanje procesa. 

Ključne reči: singas; optimizacija; simulacija; mašinsko učenje. 


