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MACHINE LEARNING PREDICTIONS ON THE 
OUTPUT PARAMETERS OF COMMON RAIL 
DIRECT INJECTION ENGINES FUELED WITH 
TERNARY BLEND 

 
Article Highlights  

• CRDI engine performance with a methyl acetate antioxidant/Non-edible oil/diesel 

ternary blend 

• Examine the impacts of fuel injection strategies (FIT and EGR) on the engine 
characteristics 

• Innovation of machine learning algorithms and prediction models LR, NN, K-NN, 

SVM, and LSTM. 

• The LSTM model yields the highest R2 value range of 0.92 to 0.96, for each engine 

response 

 
Abstract  

This study aims to employ a machine learning algorithm (MLA) to predict 

Common Rail Direct Injection (CRDI) engine emissions and performance 

using alternative feedstock. This study started with a diesel-SCOME- Methyl 

Acetate ternary mix. The engine was tested with fuel injection time (FIT) of 

23°, 21°, and 19° bTDC with exhaust gas recirculation (EGR) levels of 10%, 

15%, and 20% at estimated power productivity. Retard injection time and 

increasing EGR rates reduced in-cylinder peak pressure. Operating 

conditions with the maximum BTE were 21° bTDC and 10% EGR. Adjusting 

injection time and EGR reduced nitrogen oxide relative to the baseline. 

Smoke opacity was 1% lower at 21° bTDC and 10% exhaust gas 

recirculation than in conventional diesel operation. Retard injection time and 

exhaust gas recirculation increased HC and CO emissions. However, MLAs 

predict CI engine operation and discharge properties. The long short-term 

memory (LSTM) Model predicts engine output characteristics with a 

squared correlation (R2) of 0.92 to 0.96. At the same time, mean relative 

error (MRE) values ranged from 1.74 to 4.68%. These results show that the 

LSTM models provide superior predictive capabilities in this investigation, 

particularly when considering numerous variables to analyze engine 

responses. 

Keywords: biodiesel; methyl acetate; CRDI engine; EGR; Machine 
Learning Algorithms. 

 

Fossil fuel-based energy use in industrialized and 

developing nations is predicted to grow by 5—7% and 

1—2% yearly. In response to this increasing use,  
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researchers are considering alternative resources [1]. 

Because of their contributions to significant sectors, 

diesel engines are vital to the world market 

consequently [2]. Because they are more effective at 

transforming fuel than gasoline engines, compression 

ignition (CI) engines are often used in mobility. 

Nevertheless, because of their harmful impacts that 

affect the ecology and individual wellness, the greater 

levels of pollutants are a cause for worry. Prolonged 

exposure to pollutants has been found to elevate the 

likelihood of developing lung cancer, increasing the 

susceptibility to cardiorespiratory ailments [3]. It is 

feasible to use several types of oils to power CI engines  
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by using numerous methods and making 

adjustments [4]. The study reported that biomass fuel 

for industrial use is derived from agricultural 

byproducts. Thus, environmental impacts are 

mitigated. The effects of varying the ratio of alcohols 

added to milk scum oil are analyzed [5]. 

Overview of Simmondsia chinensis feedstocks 

It is reported that the Simmondsia chinensis oil 

(SCO) extract from the seeds of the Jojoba tree plant, 

a shrub can reach a height of between 1 and 5 m and 

has a long, healthy life span (100—200 years). This 

plant, which is common in the United States, has many 

other names. Its seedlings have oil and wax content 

ranging from 44 to 56 percent. The jojoba oil had a 

yellow hue, was without scent, and contained only trace 

amounts of triglyceride esters in addition to 97% 

monoesters of long-chain lipids. This chemical 

component is responsible for jojoba's self-stability and 

tolerance to elevated temperatures when compared to 

other non-edible oils [6]. When SCO is treated with the 

transesterification procedure, the result is biodiesel, 

which has improved properties than plain diesel, such 

as greater intrinsic oxygen content, improved cetane, 

and less sulfur [7]. 

Biodiesel as an alternative fuel in CI Engine 

Researchers evaluated CI engine efficiency and 

conducted ignition experiments using biodiesel derived 

from palm oil. It was discovered that using warmed oil 

resulted in decreased hydrocarbon (HC) and carbon 

monoxide (CO) pollutants but greater exhaust 

temperatures and nitrogen oxide (NOx) levels. Hydrous 

ethanol significantly reduces nitrogen oxide emissions, 

according to a critical analysis of numerous approaches 

to employing it in engines [8]. Results from the 

experiments demonstrated a drastic cut in various 

discharges compared to the diesel engine running on a 

single injection. In addition, growth in brake thermal 

efficiency (BTE) was 4.46%. Propane-inducing diesel 

engines using waste seed biodiesel (WSBD) have been 

investigated [9]. Additionally, this revolutionary 

combustion method is being heavily tested in internal 

combustion engines. Minimizing pollutants and 

increasing burning effectiveness are the objectives 

[10]. Another study examined the effects of using 

sapota methyl ester on the parameters of combustion 

and EGR and their impact. The outcomes suggested 

that shorter delays occurred at higher CR values. 

Lowered levels of nitrogen oxides were also detected 

[11]. The trial was conducted using cottonseed 

biodiesel in a common rail direct injection (CRDI) 

engine using exhaust gas recirculation. It follows from 

these experimental probes that an EGR rate of 25% 

results in a nearly 33% reduction in Nox [12]. Recently, 

the binary combination concept was investigated as a 

result of superior blend stability, reduced expenditure, 

along minor changes in engine hardware settings. The 

research outlined in this paper attempts to use gasoline 

along with methyl acetate. The studies on methyl 

acetate additives in engine applications are very 

limited. They have achieved prominence because of 

their soot minimization capability [13].This study looks 

at what happens when diesel and n-Pentanol/Karanja 

oil biodiesel are mixed. By including n-Pentanol, the 

properties of the biodiesel-diesel blend will be better at 

low temperatures. Pentanol's reduced fluidity and great 

instability will also significantly lower pollutants [14]. 

They discovered that a higher concentration of 

additives significantly decreased brake-specific fuel 

consumption (BSFC) and contributed to a steeper 

percentage decline in emissions [15]. 

Studies on variable FIT and EGRs with Ternary fuel 

The experiment was carried out with a ternary 

combination of diesel and JME+ n-butanol additive. It 

can be shown that jojoba oil with a high fraction of 

DBJ15 has the potential to achieve reduced pollutants 

in the short term while maintaining a high thermal 

efficiency [16]. Alcohol is made from a vast range of 

environmentally friendly ingredients. Alcohols, which 

include methanol, ethanol, and propanol, have a lower 

number of carbon atoms. Higher alcohols, on the other 

hand, have more carbon atoms than lower alcohols. 

These include pentanol, hexanol, heptanol, and 

decanol [17]. Researchers investigated the effects of 

combining diesel with 1-hexanol at different injection 

times and EGR percentages. Integrating 1-hexanol with 

an improved pre-combined burning phase prolonged 

the ignition impediment's length. At 23 BTDC and 10% 

EGR, there was a systematic reduction in both NOx and 

smoke [18]. The usage of EGR technology is one 

common strategy for decreasing exhaust-borne 

nitrogen oxides in IC engines [19]. Increase the ratio of 

1-C6H14O in diesel/WPO blends. Based on the data, it 

was found that an increased 1-C6H14O fraction in the 

mixture somewhat reduced engine performance. 

Smoke, CO, and NOx were reduced at the same 

duration, although there was a small increase in 

hydrocarbons [20]. Investigators conducted an 

empirical analysis of 2 greater alcohols, decanol and 1-

hexanol, combined with various blends of diesel and 

biodiesel. In this case, the tertiary mixes were almost 

identical to pure diesel and had superior BTE than 

biodiesel. Because of the greater alcohol content, the 

tertiary mix has the minimum emission characteristics, 

such as the least amount of smoke emission [21]. It 

stipulates that a CRDI diesel engine running on a 

ternary mix fuel has its burning and exhaust properties 

carefully examined during reduced passive 
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configurations. As a result, there is a decrease in 

smoke and Nox discharges. In addition to being very 

unpredictable, ethanol has an elevated level of O2 and 

an elevated latent heat of evaporation. Any of these 

actions might aid in lowering smoke and NOx 

pollutants [22]. Because ABE-diesel blends have a 

bigger O2 level and latent heat of vaporization than 

plain diesel, the ABE-diesel operating attributes in a CO 

engine considerably reduce the production of soot 

particles and increase ultimate particle degradation. 

Additionally, a greater amount of air may be drawn into 

the spray from upstream due to the prolonged flame lift-

off duration and ignition latency period [23]. 

Overview of machine learning prediction 

In recent years, the field of machine learning has 

made a lot of progress, and techniques like artificial 

neural networks (ANN), support vector machine (SVM), 

random forest (RF), extreme gradient (XG) Boost, and 

deep neural networks (DNN) have emerged 

rapidly [24]. Integrating engine research with machine 

learning modeling methodologies can enhance the 

calibration of the engine and the identification of the 

effective zone and minimize the trials and 3D 

simulations [25]. Machine learning (ML) is one of the 

cutting-edge developments in the field of artificial 

intelligence (AI). Machine learning algorithms (MLAs) 

are plentiful; they all involve the same repetitive 

application of mathematical formulas [26]. MLAs are 

classified into four distinct categories, which are very 

significant [27]. In MLAs, the unsupervised learning 

technique is used to identify the hidden pattern of data 

when a training dataset is not available for 

investigation. The supervised learning method is used 

to anticipate data patterns when a designated training 

dataset is available. When some pieces of information 

are missing from the training dataset, supervised 

learning can be transformed into semi-supervised 

learning. When analyzing a data pattern and receiving 

input from an outside source, MLAs use the 

reinforcement learning technique [28]. The use of AI in 

bioenergy processes is extremely limited. In addition, 

there is a shortage of research that addresses the 

potential of machine learning techniques for making 

predictions and enhancing efficiency. Researchers 

have found that ML shows considerable promise for 

overcoming obstacles to expanding bioenergy 

production [29]. There is also a lack of data on the 

effectiveness of methyl acetate and biodiesel in CI 

engines. Therefore, this article uses ternary fuel to 

address these gaps in the literature. The ternary fuel 

has been compared on several important metrics. 

These performance parameters are predicted using 

cutting-edge ML methods. 

Significance of the present work 

Contrary to the existing literature, this study 

ventures into unexplored territory by examining the 

potential of methyl acetate additives as a viable 

substitute in CI engines. It goes beyond the limited 

studies on the impact of methyl acetate inclusion in 

diesel and Simmondsia Chinensis oil methyl ester 

(SCOME) combinations and explores the influence of 

EGR and injection time with variable projection using 

various ML systems. The objective is to employ these 

algorithms in analyzing the emission and performance 

attributes of a diesel engine operating on blends of 

methyl acetate-diesel fuel fortified with antioxidants. 

This research conducts a comprehensive analysis to 

evaluate the predictive performance of neural 

networks, k-NN, support vector machines, linear 

regression (LR), and Long Short-Term Memory (LSTM) 

methods in comparison to commonly employed 

techniques. The evaluation is based on the R2 metrics. 

This paper proposes the utilization of a deep learning 

algorithm, namely an LSTM model, as a novel 

approach for predicting engine emissions and 

performance. 

 
 

MATERIAL AND METHODS 

Evaluation of test samples 

Table 1 lists the key features of biofuel derived 

from Simmondsiaceae shrub seedlings, as well as the 

assessment variants. Because of the elevated fluidity 

and content of the SCO, its simple usage may result in 

injection problems. As a result, the transesterification 

process was modified in the conversion of SCO to 

reduce its consistency and concentration. Merck 

Millipore supplied C3H6O2. A ternary mixture of C3H6O2, 

diesel, and biodiesel was created. By combining diesel 

with biodiesel, binary variation was created. The diesel 

content in the two combinations was 70% and 50%, 

accordingly. The ternary blends were referred to as 

D50SCOME30MA20 (Diesel 50% + SCOME30% + 

Methyl Acetate 20% by volume) is the MA20 blend. 

D70SCOME30 (Diesel 70% + Biodiesel 30% by 

volume) is the binary combination. 

Experimentation equipment and configuration 

Figure 2 depicts the experimental configuration. 

The Kirloskar TV1 CI engine was used for evaluation, 

which was a mono-cylinder, 4S, VCR-CI engine 

coupled to a dynamometer. In compliance with Nira i7r 

rules, it was restructured with the requisite receptors, 

sensors, and an accessible ECU to provide electronic 

injection. An AVL DIGAS 444N tester was used for 

determining NOx, while an AVL 437C smoke meter was 

used to detect smoke (SO). To achieve the injection 
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Table 1. Characteristics of test fuels. 

Property Standard Diesel SCOME D70 SCOME30 D50 SCOME30 MA20 

Density (kg/m3) ASTM D 1298 832 877 846 873 
Kinematic viscosity @40°C (cst) ASTM D 445 2.89 5.12 3.85 3.51 

Flash Point (°C) ASTM D 92 69 152 96.9 98.7 

Cetane Index (CI) ASTM D 976 47 51 - - 

Calorific Value (MJ/kg) ASTM D 240 42.5 38.21 41.28 39.12 

 

 
Figure 1. Schematic layout of experimental setup. 

 

parameters needed for the assessment, a CRDI was 

required. The diesel delivery line was changed to link to 

the CRDI framework, and a high-pressure pumping 

was added to the fuel filtration. This serves as both a 

diesel holding reservoir and a pressure controller for 

the injection equipment. To regulate pressure, a rail 

pressure sensor is connected to the Nira i7r ECU. 

Although the original injector was unable to manage the 

much-increased injection pressures used by CRDI, a 6-

hole solenoid-regulated nozzle was chosen to complete 

the job. The ECU was used to alter the first sensors and 

actuators to guarantee that every part worked properly. 

If the engine runs properly, it is termed diagnostically 

competent. Table 2 summarises the experiment engine 

settings. 

Table 2. Technical specification. 

Make and Model Kirloskar, TV1 

Cylinders & Stroke 1 & 4 
Bore  87.5 mm 
Stroke length 110 mm 
Swept volume 661 cc 
Speed 1500 rpm 
Rated output 3.5 kW at 1500 rpm 
CR 1:17.5 
Cooling method Water-cooled 
IT, CA bTDC 23° 
FIP 600 bar 

EGR Setup 

The EGR method is used to lower the in-cylinder 

and total temperatures of the charge, which in turn 

diminishes the emissions of NOX. This also makes EGR 

denser, which means its overall volume increases. A 

portion of the outlet gas is routed via the exhaust gas 

recirculation cooler and then into the air inlet. As the 

H2O in the exhaust gas recirculation cooler stays at the 

same temperature, it functions as a thermal replacer, 

taking in the heat from the outlet gases that are being 

held back. Here, the discharge was subjected to a 

temperature reduction of 36 °C. The EGR valve 

regulates the amount of air that is recycled through the 

engine. The orifice size determines the exhaust gas 

flow rate. The best way to start the operation was to 

send the recycled exhaust gas to the input port. Eq. (1) 

was used to calculate the amount of EGR rate. 

ake

exhaust

CO
EGR

CO
2 int

2

( )
% 100

( )

 
=  
 

   (1) 

The AVL 444 N gas equipment, renowned for its 

precision, was implemented to determine the amount of 

CO2 being released. This was achieved by adjusting 

the outlet discharge until the amount of incoming 
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carbon dioxide met a certain value, ensuring accurate 

measurements. [30]. 

Experimental procedure 

The baseline emissions and performance 

characteristics from the perspective of replacing 50% of 

the diesel volume with biodiesel. Tests were conducted 

on a binary blend that contained 70% diesel and 30% 

biodiesel. Compared to baseline diesel, smoke 

emissions were greater, and performance was worse. 

Therefore, we employed a well-established additive-

blending approach to reduce tailpipe smoke below 

diesel operation levels. The methyl acetate was chosen 

for this study because of its similar properties to diesel. 

The study aims to replace 50% of the volume of diesel 

with an alternative fuel. We kept the diesel volume 

constant, lowered the biodiesel by 20% vol., and 

balanced it with methyl acetate. The ternary mix 

included 50% diesel, 30% SCOME, and 20% methyl 

acetate. Compared to the binary option, the ternary mix 

operation improved combustion and reduced smoke 

emissions below diesel. But the ternary blend did more 

tests at full load, changing the fuel injection time (FIT) 

(23°bTDC, 21°bTDC, and 19°bTDC) and the exhaust 

gas recirculation (10%, 15%, and 20%) to find the best 

setting for lowering NOx and smoke emissions, as well 

as producing better performance. The study used 

diesel, two binary, and one ternary blend at normal 

operating conditions of 23º bTDC without EGR. Based 

on the examination, the ternary blend 

(D50SCOME30MA20) gave the best performance 

among the other blends at a normal setting. It is nearly 

closer to baseline fuel. Consequently, we conducted 

enhancement tests on the ternary blend of 

D50SCOME30MA20 (MA20) at compression ratio 

(CR19), and injection pressure (IP 600 bar) remained 

constant. Conducted the three trials on the same day 

and in the same weather conditions to establish 

consistency. 

Machine Learning (ML) algorithms 

ML is a recurrently employed form of AI technique. 

Artificial intelligence (AI) is widely regarded as an 

appealing and widely embraced technology for its 

ability to effectively identify and address various 

application domains, owing to its exceptional capacity 

for achieving high levels of accuracy [27]. The system 

is designed to possess the capacity for autonomous 

observation and subsequent prediction of unknown 

reactions. Without a doubt, user attributes and the 

success of their training have a direct impact on the 

effectiveness of ML algorithms [29]. The current study 

delves into a comprehensive analysis of 4 distinct ML 

algorithms. The four machine learning models 

discussed in this context are LR, neural networks (NN), 

SVM, and LSTM. All algorithms are executed with 

Rapidminer Studio Version 9.6. The grid investigation 

methodology is employed in this research to predict the 

model parameters. The algorithms employed in this 

study are utilized to forecast engine responses, namely 

BSEC and BTE, as well as NOx, CO, HC, and smoke. 

During the training process, three specific inputs are 

utilized, namely engine test fuels, FIT, and EGR rates. 

The study utilized a dataset including nearly 288 data 

points. The dataset was partitioned randomly using the 

shuffled sample technique in the methods. The training 

phase of the algorithms utilized 80% of the available 

data points, while the remaining 20% was allocated for 

the testing phase. 

 
 

ANALYSIS OF ENGINE OUTPUT PARAMETERS 

Combustion investigation 
In-cylinder pressure analysis 

Figure 2 illustrates the in-cylinder pressure (ICP) 

discrepancies observed at various crank angle (CA) 

sites for the examined variations. Under the same 

circumstances, Diesel, D70SCOME30, D50SCOME50, 

and D50SCOME30MA20 were 69.96, 69.82, 69.29, 

and 69.80 bars. The extended ignition delay of the 

MA20 variation, where more fuel ignites impulsively, led 

to a higher ICP compared to the binary combination. At 

23°, the PCPs for 10%, 15%, and 20% exhaust gas 

recirculation were 69.29, 68.99, and 67.55 bar. At FITs 

of 21° and 19°, the ICPs for exhaust gas recirculation 

levels of 10%, 15%, and 20% were 66.04 bar, 

66.95 bar, 65.19 bar, 62.99 bar, 61.69 bar, and 

60.46 bar. Retarding FIT from 23° to 19° at any exhaust 

gas recirculation rate results in a drop in the ICP. At 

10% EGR, the ICP decreased by 9%. Delayed ignition 

reduces fuel burning due to the bTDC drop, resulting in 

less uniform volume ignition and a lower ICP [31]. The 

EGR levels are enhanced from 10% to 20%, and PCP 

is reduced further at any given injection timing. For 

instance, at FIT of 23°bTDC, the PCP dropped by 2.5%. 

This is because the discharge emissions increased the 

specific heat, leading to a decrease in PCP [17]. 

Heat release rate analysis (HRR) 

Figure 2b reveals HRR disparities at different 

crank inclinations for the evaluation fuels. The HRR for 

Diesel, D70SCOME30, D50SCOME50, and 

D50SCOME30MA20 were 45.63 J/°, 43.08 J/°, 

40.43 J/°, and 48.13 J/°, correspondingly. Here, the 

MA20 blend portrayed higher HRR, which is resultant 

of the collective effect of lengthier ignition duration and 

better-oxygenated circumstances that increase the 

flame speed in the course of combustion, resulting in 

elevated HRR values [32]. When Increasing EGR 
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Figure 2. (a) ICP, (b) HRR, (c) BTE, and (d) BSFC for MA20 

variant at various FIT and EGR rates. 

levels and decreasing injection time cause the HRR 

graph to shift from left to right. EGR levels of 10%, 15%, 

and 20% at 23° have heat release rates of 48.51 J/°, 

51.21 J/°, and 53.84 J/°. Similarly, for FIT values of 21° 

and 19°, HRRs are 47.56 J/°, 47.73 J/°, 49.93 J/°, 49.42 

J/°, 49.45 J/°, and 52.07 J/° at EGR rates of 10%, 15%, 

and 20%. When changing the injection time from 23° to 

21°, the HRR's peak point decreased. The HRR 

decreased from 48.51 to 47.56 J/° at 10% EGR. The 

decrease in injection time from 21° to 19° increased 

HRR. Due to a decrease in injection time, the FIT 

retards from 23° to 21°, reducing premixed combustion 

fuel usage. This reduces fuel consumption and 

increases heat release.[33]. A longer ignition delay due 

to retarded FIT increased the early mixed-period 

burning percentage and HRR excesses. HRR 

optimization occurred when EGR rose from 10% to 

20%. HRR improves by 10% at 23°, but EGR rises from 

0% to 20%. The EGR's impact prolongs ignition lag. 

The increase is due to the preliminary mixed-burning 

step using supplemental fuel. Similar findings were 

reported. [20]. 

Performance investigation 

Brake thermal efficiency 

Figure 2c shows the D50SCOME30MA20 blend's 

brake thermal efficiency at various FIT and exhaust gas 

recirculation settings. Diesel, D70SCOME30, 

D50SCOME50, and D50SCOME30MA20 had BTEs of 

34.21%, 32.63%, 30.80%, and 33.53% at optimal 

output and engine standard specifications. The 

D50SCOME30MA20 mix had 2.3% greater BTE than 

the D50SCOME50 blend due to improved low heating 

value, atomization, and inborn O2, which accelerated 

combustion. Biodiesel ignites faster, especially during 

flame expansion, due to its higher thermal potential and 

oxygen content. [34]. The value of BTE is 32.12%, 

31.96%, and 29.75% at 23° with EGR settings of 10%, 

15%, and 20%. The BTE is 33%, 32.73%, 31.14%, 

31.75%, 31.16%, and 28.99% at 21° and 19° FITs. 

According to Figure 2c, the tertiary mix delivered at 21° 

had the highest BTE, 2.5% more than that provided at 

23° at the same EGR level. HRR studies support this. 

The ternary mix at 21° bTDC recovers more outputs 

and dissipates thermally faster, increasing BTE. 

Extended exhaust gas recirculation lowers the thermal 

efficiency of the ternary mix brake system. Because 

exhaust gases hinder combustion, BTE is lower [30]. 

Brake-specific fuel consumption 

Brake-specific fuel consumption (BSFC) is a 

crucial measure of fuel efficiency for engines that 

generate rotational power. It quantifies how effectively 

the engine converts fuel into work, making it a key 

metric in our study. The BSFC measure's calorific value 

(CV), a significant biodiesel property, plays a vital role 

in this process. Reduced calorific values increase fuel 

consumption to provide the same power output; 

therefore, higher CVs reduce BSFC, indicating better 

fuel efficiency [35]. It's important to note that although 

BTE and BSFC have an adverse connection, diesel 

with a reduced BTE has a higher BSFC. As a 

consequence, the rationale for the changes in BTE 

among biodiesel, biodiesel-alcohol combinations, and 

diesel applies to BSFC as well. This reaffirms the 

scientific rigor and validity of our research. [21]. 

Figure 2d provides a practical perspective, showcasing 

the D50SCOME30MA20 variant's BSFC at different FIT 

and exhaust gas recirculation levels. Diesel, 

D70SCOME30, D50SCOME50 combination, and 

D50SCOME30MA20 mixture had BSFCs of 0.247, 

0.28, 0.27, and 0.258 kg/kW-hr at stated capacity and 

engine standard characteristics. D50SCOME30MA20 

has a lower BSFC than D50SCOME50. Due to its 

higher O2 and CV, the ternary type uses less fuel to 

create similar energy. At 23° bTDC, the engine's BSFC 

was 0.28, 0.29, and 0.31 kg/kW-hr for 10%, 15%, and 

20% EGR. At 10%, 15%, and 20% EGR, the engine's 

BSFC was 0.264, 0.272, 0.282, 0.273, 0.28, and 

0.291 kg/kW-hr at FITs of 21° and 19°. Initially, the 

tertiary mixture BSFC dropped. We found that delaying 

the FIT from 23° to 21° and then to 19° increased it. 

Since the FIT was adjusted from 23° to 21°, this 

happened. This improvement allowed full burning by 

locating the combustion process at TDC. Thus, the 

engine needed less power to reach the speed. 

Lowering FIT from 21° to 19° caused heat dissipation 

lowered output and increased BSFC during the 

expansion stroke. For the ternary mix, higher EGR was 
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due to deterioration, which changed the air-fuel 

proportion and reduced burning, increasing BSFC. [19]. 

 
Figure 3. (a) NOx, (b) HC (c) CO, and (d) Smoke for MA20 at 

different FIT and EGR levels. 

Exhaust analysis 

NOx emission 

Figure 3a shows nitrogen oxide differences for the 

D50SCOME30MA20 mix at different FIT and EGR 

levels. Diesel, D70SCOME30, D50SCOME50 mix, and 

D50SCOME30MA20 blend emitted 1859, 1856, 1847, 

and 1913 ppm of NOx under specified power 

circumstances and engine stock settings. The ternary 

mix emitted more NOx than the binary form because 

methyl acetate stimulates burning, raising gas 

temperatures and NOx. Biodiesel burns more 

thoroughly due to its high oxygen content, raising peak 

temperatures and NOx emissions [36]. Concerning 

EGR values of 10%, 15%, and 20%, at 23° bTDC, the 

NOx emission was 1536, 1100, and 642 ppm, 

correspondingly. Similarly, at a FIT of 21° bTDC and 

19° bTDC, the nitrogen oxide values were 1231 ppm, 

1012 ppm, 540 ppm, 1088 ppm, 753 ppm, and 335 

ppm, respectively, at EGR rates of 10%, 15%, and 

20%. Delaying injection until 19° bTDC instead of 23° 

bTDC significantly reduced NOx emissions. The 

exhaust gas recirculation rate was set at 10%, and the 

injection time was reduced from 23° to 21° bTDC, 

reducing NOx emissions by 17%. Delaying the FIT 

reduced NOx by 30%. The original analysis found that 

a ternary mix at 21° bTDC increased centralized 

burning. A shorter ID time and lower fuel consumption 

helped keep nitrogen oxides low [35]. The retardation 

of the explosive process by 21° to 19° bTDC displaced 

the combustion mechanism, changing the TDC point. 

This improvement allowed LTC mode adoption, 

reducing nitrogen oxide emissions significantly [22]. 

The charge mixture's oxygen concentration 

disproportionately affected NOx formation, which 

accelerated chemical processes and boosted 

combustible temperatures. The charge mixture's 

oxygen content affected NOx production. Raising the 

EGR rate from 10% to 20% for a certain injection period 

reduced NOx output by more than twice. The dilutive 

impact of increased thermally sensitive exhaust gases 

reduced exhaust temperatures [37]. In addition, the 

chemical reaction speed was impacted by the restricted 

supply of O2. 

Hydrocarbon 

Figure 3b shows the D50SCOME30MA20 

variant's HC at different FITs and EGRs. HC emissions 

at specified power output and engine settings for 

Diesel, D70SCOME30, D50SCOME50 mix, and 

D50SCOME30MA20 blend had HC emissions of 42, 

48, 56, and 40 ppm, respectively. This shows that 

ternary variants reduce HC. In the diesel/SCOME 

combination, methyl acetate increased O2 levels. This 

sped up the oxidation reaction even in areas with a lot 

of fuel, breaking down HCs that were not fully depleted 

and lowering HC emissions. At 23° bTDC, HC emission 

was 47, 53, and 69 ppm for 10%, 15%, and 20% EGR. 

In the same way, HC emission was 49 ppm at FITs of 

21° bTDC and 19° bTDC, 59 ppm at 76° bTDC, and 53, 

61, and 83 ppm at 10%, 15%, and 20% EGR rates. 

Increasing exhaust gas recirculation (EGR) to 10% and 

fuel injection time (FIT) from 23° to 19° bTDC increases 

hydrocarbon (HC) emissions by 11%. Because of the 

delayed injection, the membrane was more likely to get 

wet, and fuel was held in poor combustion zones. This 

produced unburned or partially burned HC [30]. 

Increasing EGR intensity from 10% to 20% resulted in 

increased HC emissions. This tendency to release HC 

is caused by exhaust gases lowering the gas 

temperature. This makes it difficult for hydrocarbons to 

split into carbon particles, releasing more HC [31]. 

Carbon monoxide 

Figure 3c shows CO emission differences in the 

D50SCOME30MA20 blend at different FIT and EGR 

settings. Diesel, D70SCOME30, D50SCOME50 mix, 

and D50SCOME30MA20 blend had volume-based CO 

emissions of 0.152, 0.171, 0.194, and 0.133%. In the 

diesel/SSCOME blend, methyl acetate decreased CO 

emissions more than in the D50/SCOME50 blend. 

Methyl acetate aids CO-to-CO2 conversion because it 

transports extra O2 during combustion [38]. It’s found 

that the CO emission at 23° bTDC was 0.161% vol., 

0.326% vol., and 0.912% vol., respectively, when 

considering the EGR percentages of 10%, 15%, and 

20%. Similarly, at FITs of 21° bTDC and 19° bTDC, the 
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CO was 0.217% vol., 0.343% vol., 1.231% vol., 0.244% 

vol., 0.374% vol., and 1.613% vol., respectively, at EGR 

rates of 10%, 15%, and 20%. With delayed FIT, CO 

levels increased but decreased with higher EGR rates. 

CO climbed 3.5% when the FIT was shortened from 

23°bTDC to 19°bTDC at 10% EGR. Due to a shorter 

delay period, the A/F combination had less duration, 

potentially boosting CO emissions. However, 

increasing EGR frequency greatly lowered CO 

generation [39]. In a specific scenario of FIT 23°bTDC, 

increasing the EGR from 10% to 20% resulted in a 60% 

increase in CO. EGR's reduced air input may have 

generated an oxygen-deficient combustion zone, 

limiting CO oxidation. Lower gas temperatures reduced 

the OH-reactive concentration. However, increasing 

EGR frequency greatly lowered CO generation [40]. 

Smoke opacity 

Figure 3d shows the D50SCOME30MA20 mix SO 

at different FITs and EGRs. Diesel, D70SCOME30, 

D50SCOME50 mix, and D50SCOME30MA20 blend 

had SO at specified power levels of 57.4%, 64.2%, 

60.8%, and 51.2%, respectively. The ternary mix has 

far lower smoke opacity than the binary form. Alcohol 

has inherent O2 molecules that provide O2 for 

combustion, reducing smoke [34]. At 23° bTDC SO, 

EGR levels of 10%, 15%, and 20% were 52%, 62.5%, 

and 83.2%, respectively. For FITs of 21° and 19° bTDC, 

the smoke opacity was 56.9%, 66.5%, 88.7%, 61.2%, 

69.2%, and 92.5% at EGR rates of 10%, 15%, 20%, 

respectively. The ternary variant's changes increased 

smoke production compared to the default. At 10% 

EGR, decreasing FIT by 23° to 19° bTDC increased SO 

by 15%. Due to reduced in-cylinder gas pressures 

during delayed intake latency, the A/F proportion 

changes. This increases smoke from carbon 

oxidation [5]. Even more than the FIT delay, rising EGR 

levels raised SO. Increasing EGR from 10% to 20% at 

23° bTDC increased SO by 62.5%. Increased exhaust 

gas recirculation due to decreasing O2 levels hinders 

combustion [36]. 

MLAs prediction analysis 

In this study, the application of deep learning, 

namely the LSTM model, is utilized as the optimization 

framework. LSTM was used to predict BTE, BSFC, CO, 

HC, smoke, and NOx using FIT and EGR variables. 

First, we train the LSTM model with 288 experimental 

observations. The network's performance was 

evaluated using a training dataset of 80% of the 

experimental data, a validation dataset of 10%, and a 

testing dataset of 10%. These may be assessed using 

training and testing of MRE and R2-values. After that, 

the stored network generates output values for the 25 

randomly picked input values. Eq. (2) illustrates the 

correlation coefficient (R2), while Eq. (3) illustrates the 

MRE. Where ‘ti’ is the target value and ‘oi’ is the 

theoretical output value, 
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Let 𝑡i and 𝑜i represent the predicted and 

measured values, respectively. t denotes the mean of 

the measured values, while n represents the 

observations. This method contains knowledge of a 

particular model's anticipating power regarding a 

certain dataset. The coefficient of determination, 

denoted as R², has a range of values from 0 to 1. An R² 

number nearing 1 signifies a higher level of 

performance [41]. 

 
Figure 4. Machine learning algorithm models flow chart. 

Evaluation of prediction models 

R2 levels are calculated by altering the quantities 

of training and evaluating information. The R2 for 

various training and assessment information 

proportions demonstrates that the model is consistent 

beyond 80:20 ratios. The score approaching 100% 

indicates that the model can reflect all variance in 

output information. The hypothesized approach is 

contrasted to the R2 values of models developed with  
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linear regression, support vector machine, neural 

networks, K-nearest neighbors (K-NN), and Deep 

Learning (LSTM) approaches. Figure 5a depicts model 

evaluations according to the R2 value. The suggested 

model surpasses the previous approaches and yields 

excellent outcomes. The LR, NN, SVM, and LSTM 

models best fit the narrative or hypothesis of the current 

examination. At the same time, Figure 5a includes a 

broad comparison to provide a comprehensive 

overview of machine learning models. Four distinct ML 

models predicted values are close to unity. K-NN, PR, 

GP, and RVM models predicted values are very low 

compared to the unity. Therefore, this model is not 

suitable for the current investigation. The R2 values 

were determined to be 0.92 and 0.96, respectively. The 

results of the LSTM replication demonstrate its capacity 

to anticipate crucial features accurately. The MRE 

values for the stated features range from 1.74% to 

4.68%, Figure 5b shows that FIT, EGR, BTE, BSFC, 

and NOx strongly correlate with the target column. 

Even little changes in these variables affect the target 

column. CO, HC, and smoke are weaker but favorably 

connected to the target column. Thus, changes in these 

columns may not impact the target column. FIT, EGR, 

BTE, BSFC, and NOx predict the target column well, 

while CO, HC, and smoke do not. In future modeling 

and analysis, knowing how qualities relate to the target 

variable is vital. 

 
Figure 5. (a) Comparison of R2 value and 5 (b) Heatmap 

representing correlation for Machine Learning Algorithms. 

Validation of the LSTM model 

The methodology's practicality must be validated 

before deployment. The Long Short-Term Memory 

(LSTM) model improved engine operating settings for 

experimental studies. The program generated 

expected significance levels from replications during 

failure periods. Figure 4 illustrates the training process 

through a flow chart, and Table 3 was used to verify 

these results. Eq. (4) calculates the value error 

percentage. 

( )E
Observed value-Predicted value

Percentage of error % 100
Observed value

= 

     (4) 

The best results can only be obtained through 

appropriate verification. To account for LSTM fuel 

injection time (FIT) and EGR, the largest input variable 

maintained from testing was the mean. Equation error 

rates range from 0.2 to 5.7%. The analysis found fewer 

than 6% inaccuracies in emissions and efficiency 

projections. LSTM makes it easier to understand how 

elements interact. Thus, the Long Short-Term Memory 

(LSTM) model may predict diesel engine 

characteristics. Machine learning algorithms may 

predict pollutants and operational factors. Other 

quantitative and computational methods may struggle 

with the problem's complexity and diversity. 

 
 

CONCLUSION 

 

The research work outlines the methyl acetate, 

FIT, and EGR settings affect CI engine parameters in 

diesel and SCOME variations, as found below. 

MA20 injected at 21°bTDC, and 10% EGR had 

the highest BTE (33%), correlating with the remaining 

operating conditions. However, the BTE was somewhat 

lower than that of the MA20 blend at default settings. In 

MA20 fuel, 21°bTDC and 10% exhaust gas 

recirculation reduce nitrogen oxides in comparison to 

other fuels. The MA20 mix decreases the SO by 11% 

at 21°bTDC and 10% exhaust gas recirculation. 

However, it was 1% less than baseline diesel. Later, 

FIT and higher EGR resulted in increased hydrocarbon 

and CO outflow. The LSTM methods estimate engine 

output characteristics that are close to unity. LSTM 

showed the highest R2 and MRE values, which are 

0.961 and 1.74%, respectively. All measurements 

combined show that the other algorithms predict engine 

responses the least. When considering various 

injection timings and EGR rates with the MA20 mix, 21° 

bTDC and 10% EGR are generally the best operating 

conditions. The results suggest that a Simmondsia 

Chinensis seed biodiesel mix with MA20 volume can 

reduce pollutants in CRDI CI engine applications. 

Choosing the best fuel injection time and EGR 

rate to reduce NOx and smoke emissions depends on 

many parameters, including engine type, fuel 

properties, and engine performance. According to the 

provided facts, decreasing emissions may begin with 

delayed fuel injection from 23º to 19º bTDC. In contrast, 

brake thermal efficiency, fuel consumption, and engine 

power output should be considered when selecting 

optimal operating conditions. Balancing emissions 

reduction and engine performance is essential. The 

delayed injection resulted in a decrease in NOx, which 

in turn led to a reduction in engine performance. 

Therefore, to evaluate emissions and performance, we 
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suggest conducting a series of tests or simulations 

under 21º bTDC at 10% EGR [42,43]. 

 

 

NOMENCLATURE 

ASTM American Society for Testing and Materials 
bTDC Before Top Dead Centre, CA 
BSFC Brake Specific Fuel Consumption (kg/kW-hr) 
BTE Brake Thermal Efficiency, % 
CA Crank Angle, deg 
CI Cetane Index 
CR Compression Ratio 
CRDI Common Rail Direct Injection 
CV Calorific value 
SCOME Simmondsia Chinensis Oil  Methyl Ester 
MA Methyl Acetate 
D70SCOME30 Diesel-70%, SCOME-30% 
D50SCOME50 Diesel-50%, SCOME -50% 
D50SCOME30MA20 Diesel-50%, SCOME - 30%, Methyl Acetate -

20% 
ECU Electronic Control Unit 
VCR Variable Compression Ratio 
HC Hydrocarbons, ppm 
CO Carbon monoxide, % vol. 
HRR Heat Release Rate, J/deg 
ICP In-cylinder pressure, bar 
NOx Nitrogen oxides, ppm 
PPM Parts Per Million 
MLAs Machine Learning Algorithms 
LSTM Long Short-Term Memory 
NO Neural Network 
LR Linear Regression 
SVM Support Vector Machine 
KNN K-Neural Network 
PR Polynomial Regression 
GP Gaussian Process 
RVM Relative Vector Machine 
R2 Squared Correlation 
MORE Mean Relative Error 
RMSE Root Mean Square Error 
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NAUČNI RAD 

PREDVIĐANJA MAŠINSKOG UČENJA O 
IZLAZNIM PARAMETRIMA MOTORA SA 
COMMON RAIL DIREKTNIM 
UBRIZGAVANJEM GORIVA TERNARNE 
MEŠAVINE 

 
Cilj ovog rada je da algoritmom mašinskog učenja (MLA) predvidi emisije CRDI (common 

rail direktno injektor) motora i performansi koristeći alternativnu sirovinu. Istraživanja su 

započeta trokomponentnom mešavinom dizel-SCOME-metil acetat. Motor je testiran sa 

vremenom ubrizgavanja goriva (FIT) od 23°, 21° i 19° bTDC sa nivoima recirkulacije 

izduvnih gasova (EGR) od 10%, 15% i 20% pri procenjenoj produktivnosti snage. 

Usporavanje vremena ubrizgavanja i povećanje EGR-a smanjuju vršni pritisak u cilindru. 

Radni uslovi sa maksimalnim BTE su bili 21° bTDC i 10% EGR. Podešavanje vremena 

ubrizgavanja i EGR smanjilo je azot oksid u odnosu na osnovnu liniju. Prozirnost dima 

bila je 1% niža na 21° bTDC i 10% recirkulacije izduvnih gasova nego u konvencionalnom 

dizel pogonu. Usporeno vreme ubrizgavanja i recirkulacija izduvnih gasova povećavaju 

emisije HC i CO. Međutim, MLA predviđa rad motora CI i svojstva pražnjenja. Model 

dugotrajne kratkoročne memorije (LSTM) predviđa izlazne karakteristike motora sa 

korelacijom na kvadrat (R2) od 0,92 do 0,96. Istovremeno, vrednosti srednje relativne 

greške (MRE) kretale su se od 1,7 do 4,7%. Ovi rezultati pokazuju da LSTM modeli 

pružaju superiorne prediktivne mogućnosti, posebno kada se razmatraju brojne 

promenljive za analizu reakcija motora. 

Ključne reči: gusta membrana; prozračna membrana; stepen apsorpcije; 
propustljivost biodizel; metil acetat; CRDI motor; EGR; algoritmi mašinskog 
učenja. 


