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Article Highlights  

• An aluminum scrap metal matrix material is fabricated, and machinability studies are 

performed 

• ECMM performance is analyzed using (SAW), (CRITIC) and (ANN) techniques 

• The best results show high MRR and low OC at 28 g/lit NaNO3+0.05M HNO3, 10 V, 

and 80% duty cycle 

• The weight values of the performance metrics obtained using the SAW method are 

0.549 and 0.45 

• The optimal output performance predicted by ANN is MRR of 0.520 µm/sec and OC of 

23.8 µm 

 
Abstract  

Electrochemical micromachining (ECMM) finds application in various 

industries, especially in surface finishing processes in aerospace industries. 

In this research, the workpiece made from aluminum scrap metal matrix 

reinforced with alumina is subjected to wear, surface profile, and 

machinability studies. To analyze the ECMM performance, simple additive 

weighting (SAW) CRiteria Importance Through Intercriteria Correlation 

(CRITIC) and Artificial Neural Network (ANN) were used. The wear studies 

show that at high loads the height wear loss is less and frictional force is 

more. The L18 mixed orthogonal array experiments were conducted and 

analysis of experiments shows that the most crucial parameter values for 

high MRR and low OC are 28g/lit NaNO3+0.05M HNO3, 10 V, and 80% duty 

cycle. The weight values of the performance metrics obtained using the 

SAW method are 0.549 and 0.45. The optimal output performance predicted 

by ANN is MRR of 0.520 µm/sec and OC of 23.8 µm. 

Keywords: mixed electrolyte; sodium nitrate; nitric acid; duty cycle; 
optimization; overcut. 

 
 

Electrochemical micromachining (ECMM) is the 

key machining process for machining burr-free micro 

features on the components. The ECMM is applied in 
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diverse fields, such as biomedical, aerospace, and 

automobile. In ECMM, the cathode is the tool electrode 

and the anode is the workpiece which is the one to be 

machined. The electrodes are bridged by the 

electrolyte and while applying the voltage the material 

removal takes place. The removal of material in the 

range of 0-999µm from the anode is denoted as 

micromachining. From a manufacturing industry 

perspective, productivity, quality, and cost will go in 

holding hands and hence optimizations of the 

machining process were performed by many 

researchers [1]. Ganesan et al. [2] have optimized the  
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laser parameter on dimple accuracy using principal-

component-analysis-coupled grey relational grade. The 

optimal factor setting is 15 kHz (frequency), 12 W 

(average power), and 1500 ns (pulse duration). 

Sivashankar et al. [3] have optimized the ECMM 

parameters for machining magnesium alloy using 

TOPSIS and artificial neural networks (ANN). They 

reported that for obtaining a high material removal rate 

(MRR) the optimal combination is 13 V machining 

voltage, 75% duty cycle, and 30 g/L electrolyte 

concentration. Debkalpa Goswami et al. [4] have 

comparatively studied the ECMM performance using a 

differential search algorithm, genetic algorithm, and 

desirability function approach and proved that the 

differential search algorithm is a suitable method as a 

global optimization tool. Geethapriyan et al. [5] have 

optimized the ECMM variables using grey relational 

analysis with the Taguchi method. Based on the 

experimental study, it is evident that micro-tool feed 

speed is the most significant factor for sodium chloride 

electrolyte, and voltage is a significant factor for sodium 

nitrate electrolyte. Prakash et al. [6] have optimized the 

ECMM parameters using response surface 

methodology and Teaching-Learning-Based 

Optimization algorithm. When the results are 

examined, they agree with the RSM result when a 

target surface roughness value of 0.4 μm is taken into 

consideration. This confirms that the TLBO algorithm is 

better than the RSM approach. Rajan et al. [7] have 

optimized the ECMM characteristics for machining 

metal matrix composites using the TOPSIS method. 

The study reveals that the sodium nitrate electrolyte of 

35 g/L concentration, the machining voltage of 11 V, 

and the 70% duty cycle are the optimal combination for 

higher MRR and lesser OC. Senthilkumar et al. [8] used 

the non-dominated sorting genetic algorithm II to 

optimize the electrochemical machining settings. The 

optimal value of surface roughness is found to be 

2.172 µm and the related MRR is 0.413 g/min. 

Chandrasekhar et al. [9] have optimized the ECMM 

factors using the Entropy–VIKOR method for micro-

drilling of AA6061-TiB2. The electrolyte concentration of 

2 mol, applied voltage of 16 V, and current of 4 A of 

current is the optimal parameter combination to 

minimize the overcut, and delamination, and to 

maximize the MRR. Nagarajan et al. [10] compared 

different multi-criteria decision-making algorithms such 

as grey wolf, moth-flame, and particle swarm methods. 

The study showed that the grey wolf and moth-flame 

algorithm shows the same result for machining Monel 

400 alloys with ECM. Using the CRiteria Importance 

Through Intercriteria Correlation (CRITIC) -AHP 

technique, Venugopal et al. [11] optimized the ECMM 

parameters and found that the electrolyte concentration 

is the key component influencing conicity. Maniraj et 

al. [12] have applied three different weight evaluation 

methods for optimizing the ECMM parameters with the 

VIKOR method. Out of three weight evaluation 

methods, the analytic hierarchy process is found to 

produce the best result in ECMM. Manivannan et 

al. [13] have established the relationship between the 

ECMM process variables and output performance 

namely machining rate and OC They reported that the 

established is more efficient and accurate. Kaliappan et 

al. [14] have optimized the ECMM factors on machining 

rate, radial overcut, and delamination factor. They used 

the entropy method to determine the weights of the 

output performance. The grey relational grade is used 

to optimize the multi-performance and reported that 

80 V,20 gm/lit, 50% duty cycle, and 40 °C electrolyte 

temperature is the optimal combination for achieving 

the higher machining rate, lower radial overcut, and 

lower delamination factor in metal matrix composites. 

Rajan et al. [15] have used TOPSIS and principal 

component analysis to optimize the ECMM factors on 

aluminum boron carbide composites. They found that 

the electrolyte concentration of level 35 g/L, the voltage 

at 11 V, and the duty cycle at 70% were the optimal 

combination for the machining rate, the diametric 

overcut, and the delamination factor, moreover ANOVA 

analysis shows that the duty cycle is the most 

significant factor. It is apparent that research on ECMM 

and process optimization were performed worldwide 

and the application of the multi-criteria decision-making 

(MCDM) method, namely Simple additive weighting 

(SAW) combined CRITIC in ECMM is sparse. 

Moreover, the results are predicted with the help of the 

ANN model. Hence in this research Nitric acid mixed 

sodium nitrate electrolyte is used and a mixed L18 

orthogonal array (OA) experimental plan is used for the 

conduct of the experiments. The factors considered are 

the type of electrolyte, concentration of electrolyte, 

voltage, and duty cycle on MRR and OC. 

Wear and surface estimation 

The wear studies were performed on the sample 

with a constant track radius. The different load levels of 

10 N, 20 N, and 30 N were applied on the specimen at 

constant speed and time of 380 rpm, 5 minutes 30 

seconds respectively. The test results show that for a 

10 N load, the height loss wear is 52 µ and the frictional 

force generated is 3.9 N. On further increase in load to 

20 N and 30 N for the same speed and time condition 

the height loss wear and frictional force were 44 µ and 

7.9 N & 34 µ and 13.2 N respectively. It is evident from 

the wear results that at low loads, the height loss wear 

is greater and the frictional force is less. It is due to the 

fact the poor distribution of reinforcement increases the 

height wear loss. At high loads, the height wear loss is 

less, and the frictional force is higher. The  
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amalgamation of reinforcement attributes for more 

frictional force. The wear-investigated sample surface 

roughness depth profile is shown in Figure 1, where the 

values of Rz, Rt, and Ra are 24.5 µm, 55.4 µm, and 

3.04 µm, respectively. 

 
Figure 1. Surface roughness depth profile. 

Experimental setup 

The ECMM setup, which included a machining 

chamber, an electrolyte supply system, a pulsed power 

supply, and a tool advance mechanism, was used to 

conduct the experiments. The machining chamber 

housed the workpiece holder made up of Perspex 

material. The capacity of the machining chamber held 

2 L of electrolyte. The electrolyte supply system 

consisted of a chemical pump, a filter to remove the 

debris, and an electrolyte supply pipe and nozzle. The 

pulse power supply unit with the specification of  

0—30 V, current of 0—5 A, and frequency of 100 Hz was 

used for the experiments. The tool advance mechanism 

comprised the stepper motor, lead screw, and tool 

holder. The stepper motor was controlled by a 

microcontroller program. The tool holder was made up 

of a hollow copper tube and provided with a screw to fix 

the electrode. The tool electrode was isolated from the 

tool feeding arrangement. The workpiece was given 

with a positive power supply and the tool electrode was 

given with a negative power supply. The workpiece 

used for the experiment was the alloy wheel matrix 

composites of thickness of 300 µm. Figure 2 presents 

the optical microscope image of the workpiece sample 

which witnesses the presence of the silica. Figure 3 

shows the EDAX image of the workpiece sample used 

for the machining. It shows the presence of aluminum, 

nickel, magnesium, carbon, oxide, chromium, iron, and 

silica. The tool electrode with a 600 µm diameter was 

coated with bonding liquid for insulation purposes to 

avoid stray current. The type, concentration, voltage, 

and duty cycle of the electrolyte were the parameters 

used in the studies. The performances were measured 

using MMR in µm/sec and OC in µm. The L18 mixed OA 

was considered and levels were identified based on 

past experiments and presented in Table 1. In this 

study, the total number of factors was four at three 

levels, hence the degrees of freedom was eight. 

Therefore, the OA selection should be more than eight, 

and hence, L18 was selected. Since there were two 

types of electrolytes, a mixed OA was considered for 

this study. The electrolyte sodium nitrate (NaNO3) salt 

was mixed with 1 L of distilled water and stirred 

properly. Another type of mixed electrolyte, i.e., 

acidified NaNO3 was prepared and used. To prepare 

0.05 M of nitric acid, 3.20 mL of nitric acid was added 

to 1 L of distilled water, while NaNO3 of varying grams 

was added to the mixed electrolyte [16]. 

 
Figure 2. Optical image of the workpiece surface. 

 
Figure 3. EDAX image of the sample workpiece. 

 

 
RESULTS AND DISCUSSION 

The MCDM approach uses the conflicting criteria 

to characterize the conflicting correlation between the 

decision criteria, or the alternatives that are taken into 

consideration in an MCDM problem. CRITIC method 

handles the multi-criteria problems more efficiently and 

at the same time it describes the weight and assists the 

decision maker in making a decision based on the 

importance of criteria, moreover it eliminates the non- 
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Table 1. L18 OA. 

S.No Electrolyte (E) Electrolyte Concen-tration (EC), g/L Voltage (V), V Duty Cycle (DC), % MRR, µm/sec Overcut, µm 

1 
N

a
N

O
3
 

20 8 70 0.208 140.17 
2 20 9 80 0.250 86.98 
3 20 10 90 0.217 60.49 
4 24 8 70 0.156 90.67 
5 24 9 80 0.217 206.23 
6 24 10 90 0.238 222.02 
7 28 8 80 0.278 119.49 
8 28 9 90 0.263 176.77 
9 28 10 70 0.208 131.25 

10 

N
a

N
O

3
+

0
.0

5
M

 H
N

O
3
 

20 8 90 0.250 319.51 
11 20 9 70 0.278 218.23 
12 20 10 80 0.227 116.24 
13 24 8 80 0.500 151.76 
14 24 9 90 0.313 60.99 
15 24 10 70 0.500 131.73 
16 28 8 90 0.417 37.49 
17 28 9 70 0.500 62.07 
18 28 10 80 0.556 22.51 

 

salient attributes. The multi-attribute process known as 

SAW is founded on the idea of a weighted summation. 

The method will attempt to find a weighted total of how 

well each alternative performed across all alternative 

criteria. The option with the highest score will be the 

best and will be suggested. The SAW method's 

fundamental idea, which is to determine the number of 

weighted performance ratings for each choice on all 

qualities, is useful. To use SAW, the decision matrix 

must be normalized to a scale that can be compared to 

all of the ratings of the available choices. 

In this study, it was challenging to achieve lower 

OC and higher MRR at the same time. Greater MRR 

typically results in the acquisition of more reaction 

products and greater OC. When analyzing a 

contradictory correlation, the CRITIC approach uses 

the Pearson correlation coefficient, which ranges from 

-1 to 1 [17]. CRITIC was first envisioned by Diakoulaki 

et al. [18], this technique is based on the analysis of the 

assessment matrix to mine all the data included in the 

evaluation criteria. This method evaluates criterion 

weights by considering a criterion's standard deviation 

as well as its correlation with other criteria. 

"a" is the number of alternatives, "b" denotes the 

number of criteria, and 𝐴 = [𝜙𝑖𝑗]𝑎×𝑏, 𝜑𝑖𝑗 is the 

performance measure of the ith alternative with regard 

to the jth criterion in an initial decision matrix.  

Using the CRITIC approach, the initial decision 

matrix is normalized by using equation (1). 

j

ij j

ij

j

d min

min

max

 



−
=     (1) 

where, ( )j ij i amax max , 1...., = =

and ( )j ij i amin min , 1...., = = . 

The standard deviation of each criterion and its 

correlation with other criteria are taken into 

consideration when determining the weights assigned 

to them. Thus, it is possible to determine the weight of 

the jth criterion 𝑤j in the following way [11]: 

j

j m

i
i

w

w
1



=

=



    (2) 

where 𝑤𝑗is the amount of information present in the jth 

criterion and can be obtained as follows: 

( )
m

j j ij
i

w
1

1 
=

= −     (3) 

where is the correlation coefficient between the jth and 

ith criteria, and σj is the standard deviation of the jth 

criterion. 

Based on the weighted average, the SAW 

methodology is a simple multi-attribute decision-

making method that was initially adopted by 

Churchman et al. [19]. The SAW method's steps are as 

follows: 

• Create a decision matrix [Xij] for different 

performance scenarios. 

• Normalizing the value of ith criterion for the jth 

Alternative by using Eqs., (49) and (5): 

ij

ij
ij

X

Xmax
 =  if j is a gain/MRR attribute  (4) 

ij

ij
ij

X

X

min
 =  if j is a loss/OC attribute  (5) 

where 𝜌𝑖𝑗is the normalized decision matrix. 

Determine the SAW (Si) value by using Eq. (6). 

  i ij jS  =     (6) 

Arrange the final results according to value, with 

the highest number being the best experimental 

combination for the highest performance metrics (MRR 

and OC). The normalized values for MRR and OC  
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obtained using the CRITIC and SAW techniques are 

shown in Table 2. Using the normalized values 

obtained using CRITIC, the standard deviations for 

MRR and OC were computed, and they are, 

respectively, 0.3126 and 0.2566. Table 3 shows the 

correlation between the performance measures. 

Table 2. Normalization of original values through CRITIC and 

SAW. 

 Normalization  - 
CRITIC 

Normalization -
SAW Si Rank 

Sl.No MRR OC MRR OC 

1 0.1304 0.6039 0.1476 0.2198 0.2781 16 

2 0.2348 0.7829 0.1771 0.1364 0.3635 8 

3 0.1531 0.8721 0.154 0.0948 0.3823 7 

4 0 0.7705 0.1107 0.1422 0.2661 17 

5 0.1531 0.3814 0.154 0.3234 0.2639 18 

6 0.205 0.3282 0.1687 0.3481 0.2809 14 

7 0.3043 0.6735 0.1968 0.1874 0.3593 9 

8 0.2677 0.4806 0.1864 0.2772 0.3174 11 

9 0.1304 0.6339 0.1476 0.2058 0.2831 13 

10 0.2348 0 0.1771 0.501 0.2788 15 

11 0.3043 0.341 0.1968 0.3422 0.3209 10 

12 0.1779 0.6844 0.161 0.1823 0.3117 12 

13 0.8609 0.5648 0.3542 0.2379 0.5609 5 

14 0.3913 0.8705 0.2214 0.0956 0.4749 6 

15 0.8609 0.6323 0.3542 0.2065 0.5710 4 

16 0.6522 0.9496 0.2952 0.0588 0.6820 2 

17 0.8609 0.8668 0.3542 0.0973 0.6573 3 

18 1 1 0.3936 0.0353 0.9990 1 

 

Table 3. Correlation between the performance measures. 

Performance measures MRR OC Cj wj 

MRR 1 0.3683 - - 

OC 0.3683 1 - - 

MRR 0 0.63169 0.1975 0.5492 

OC 0.63169 0 0.1621 0.4508 

 

For MRR and OC, respectively, the weight values 

of the performance metrics obtained using Eqs. (4) and 

(5) are 0.549 and 0.45. The SAW method uses Eq. (6) 

to estimate the final Si value by taking the computed 

weight values into account. The greatest value is 

ranked 1 and given the highest importance, with the 

remaining values being ranked in order of descent  

[20—21]. According to Table 2, the most crucial 

parameter values for high MRR and low OC are 28 g/L 

NaNO3+0.05 M HNO3, 10 V, and 80% duty cycle. The 

second-best set of parameters is 28 g/L NaNO3+0.05M 

HNO3, 8 V, and 90% duty cycle. It is evident from the 

optimized parameter combinations that acidified 

NaNO3 is one of the factors that influence the output 

performance. Acidic electrolytes are utilized to improve 

the dissolution efficiency; nitric, hydrochloric, sulfuric, 

and perchloric acids are a few examples of acidic 

electrolytes. Since the ions and other reaction products 

are firmly dissolved in the electrolytic solution, there is 

a significant reduction in the inter-electrode gap. 

Additionally, this solves the clogging issue and 

enhances the machining efficacy in ECMM [22]. 

The SEM picture shown in Figure 4 was machined 

at 28 g/L NaNO3+0.05 M HNO3, 10 V, and 80% duty 

cycle, depicting a good circular micro-hole with an over-

etched and corroded surface [23]. 

 
Figure 4. SEM picture of micro-hole. 

ANN prediction 

In recent research, the implementation of the 

advanced non-traditional method in optimization is 

highly required for accurate outcomes. Here ANN is 

implemented to predict the suitable inputs and outputs. 

Here developed ANN model will predict the accurate 

inputs and output parameters with the help of training 

and targets. MATLAB 15 software was utilized for 

architecture development. This architecture is 

developed with different layers as given in Figure 5. 

Here 4 inputs are used to carry out the 

experiments [24]. Hence ANN is developed to process 

4 inputs with ten hidden layers. A hidden layer in ANN 

is used to process the input values while training. 

Output layers are generally predicting the processed 

output. For input and output processing, a random data 

revision type MATLAB inbuilt algorithm is used. ANN 

prediction consists of three important stages. Initially 

network development and followed by training. The 

final stage in ANN is output prediction [25]. Here all the 

experimental inputs are considered as training 

variables. For training, experimental outputs are 

considered target values. Totally 5000 iteration training 

is given to ANN and its parameters. Based on training 

and target variables, training is given with a total time 

limit of 1 minute and 23 seconds. 

It is observed that the total ANN training has 

achieved 5000 iterations without any errors. The blue 

training line gradually reaches the target while training. 
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Figure 5. Neural network with algorithm. 

For better understanding, a narrow straight line in 

the gradient curve (Figure 6) reveals error-free training 

of ANN architecture. Totally 4994 iterations are verified 

by ANN which is 99.8% accuracy of developed 

architecture. As can be seen in Figure 6, it represents 

99.9% of training with an overall performance of 97.9% 

[26-27]. With respect to training, ANN predicted time is 

614 s of machining time with 0.520 MRR and 23.8 OC. 

ANN predictions present a similar trend to CRITIC and 

SAW. The predicted parameters and their levels are 

given in Table 4. 

 

Figure 6. ANN gradient curve. 

 

Table 4. Results of the ANN model. 

Parameters Optimal process parameters 
CIRTIC and SAW ANN Prediction 

Levels E2EC3V3D2 E2EC3V3D2 
Time (min) 540 614 

MRR (μm/s) 0.556 0.520 
OC (μm) 22.51 23.8 

 

 

CONCLUSION 

1. A wear test was conducted on the fabricated 

metal matrix composites and on applying a 30 N 

load and a 380 rpm speed, the height loss wear 

was 34 µ, and the frictional force developed was 

13.2 N. 

2. The wear-investigated sample surface 

roughness depth profile showed the values of 

Rz, Rt, and Ra of 24.5 µm, 55.4 µm, and 

3.04 µm, respectively. 

3. The OA experiment was successfully conducted 

using NaNO3 and NaNO3 +HNO3 electrolytes. 

4. The most crucial parameter values for high 

MRR and low OC were 28 g/L NaNO3+0.05M 

HNO3, 10 V, and 80% duty cycle. The second-

best set of parameters were 28 g/L 

NaNO3+0.05M HNO3, 8 V, and 90% duty cycle. 

5. The performance measures acquired by the 

SAW approach had weight values of 0.549 and 

0.45. 

6. The optimal output performances predicted by 

ANN are MRR of 0.520 µm/s and OC of 23.8 µm. 

The expected values and the experimental 

values were reasonably close. Hence ANN was 

best suited for the ECMM performance 

prediction. 

Based on ANN prediction, the best levels of 

parameters were 28 g/L of NaNO3+0.05 M HNO3 with 

10 V and 80% duty cycle. 
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NAUČNI RAD 

ANALIZA PERFORMANSE 
ELEKTROHEMIJSKE MIKROMŠINSKE 
OBRADE KORIŠĆENJEM 
JEDNOSTAVNIH ADITIVNIH TEŽINA, 
VAŽNOSTI KRITERIJUMA METODAMA 
KORELACIJE MEĐUKRITERIJUMA I 
VEŠTAČKE NEURONSKE MREŽE 

 
Elektrohemijska mikromašinska obrada (ECMM) nalazi primenu u različitim industrijama, 

posebno u procesima završne obrade površina u vazduhoplovnoj industriji. U ovom radu, 

radni komad napravljen od matrice starog aluminijumskog metala ojačanog glinicom je 

podvrgnut istraživanjima habanja, površinskog profila i obradivosti. Za analizu 

performansi ECMM-a, korišćene su jednostavne aditivne težine (SAV) važnosti 

kriterijuma kroz međukriterijumsku korelaciju (CRITIC) i veštačka neuronska mreža 

(ANN). Studije habanja pokazuju da je pri velikim opterećenjima gubitak habanja po visini 

manji, a sila trenja veća. Sprovedeni su eksperimenti sa mešovitim ortogonalnim nizom 

L18, koja je pokazala najvažnije vrednosti parametara za visok MRR i nizak OC: 28g/l 

NaNO3+0,05 M HNO3, 10 V i 80% radnog ciklusa. Vrednosti težine metrike performansi 

dobijene metodom SAV su 0,55 i 0,45. Optimalne izlazne performanse koje predviđa 

ANN je MRR od 0,52 µm/s i OC od 23,8 µm. 

Ključne reči: mešani elektrolit; natrijum-nitrat; azotna kiselina; radni ciklus; 
optimizacija; prekomerno sečenje. 


