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Abstract  

The main reaction parameters examined were the amount of blast furnace 

slag, the hydration duration, ammonium acetate concentration, and 

temperature. The Response surface methodology was employed to quantify 

their impact on the sorbent's surface area. Using a central composite 

design, the surface area of the resulting sorbent corresponding to Brunauer- 

Emmett-Teller (BET) was investigated. The sorbents produced range in 

surface area from 49.89 to 155.33 m2/g. Additionally, the effectiveness and 

response prediction capacities of the Response Surface Methodology 

(RSM) and Artificial Neural Network (ANN) modeling methodologies were 

investigated. The models were assessed using various statistical metrics, 

including (MSE) mean squared error, (ARE) average relative errors, the 

(SSE) sum of squared errors, (HYBRID) Hybrid fractional error function, 

(SAE) Sum of the absolute errors, (R2)coefficient of determination, and Root 

means square. According to statistical evidence, the ANN approach 

surpassed the RSM-CCD model approach. The surface area of the sorbent 

was shown to be significantly influenced by interactions between variables 

in addition to all the individual variables examined. The sorbent was made 

from a material with substantial structural porosity based on SEM. The 

functional groups were identified using FTIR. The XRF determined the 

elemental composition of BFS-based sorbents. 

Keywords: blast furnace slag, optimization, central composite design, 
artificial neural network, response surface methodology. 

 
 
 

The control of atmospheric pollution brought on by 

combustion processes like coal has recently been 

subject to stricter environmental restrictions worldwide. 
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The most plentiful and cost-effective energy source is 

coal, essential for supplying the world's rising need for 

electricity [1]. Burning coal provides various difficulties 

even if it is a significant energy source. The discharge 

of pollutants, particularly sulphur dioxide, into the 

environment is one of the most critical problems facing 

enterprises that burn coal. Sulphur in coal combines 

with air during combustion to create sulphur dioxide 

(SO2). Sulphur dioxide is one of the many contaminants 

in our atmosphere (SO2) [2]. Burning things containing 

sulfur releases a harmful gas into the atmosphere. All 

types of coal and oil include sulphur. Industrial facilities 

that use fossil fuels to produce energy or extract metal  

http://www.ache.org.rs/CICEQ
mailto:222386568@edu.vut.ac.za


350 

KOHITLHETSE et al.: BLAST FURNACE SLAG FOR SO2 CAPTURE… Chem. Ind. Chem. Eng. Q. 30 (4) 349−357 (2024) 
 

 

 

from ore are the primary sources of SO2 emissions 

(smelter). Other anthropogenic sources include 

locomotives, ships, and other large vehicles or 

equipment that burn sulphur-rich fuel. Volcanoes are 

the sole crucial natural source of SO2. Only roughly 

one-third of all SO2 emissions into the atmosphere 

come from volcanoes. Volcanic SO2 has little effect in 

South Africa because no active volcanoes exist [3]. 

Both direct SO2 exposure and secondary 

pollutants created when SO2 combines with other 

airborne molecules negatively affect health. A 

significant secondary contaminant associated with SO2 

is delicate particulate matter. Exposure to SO2 results 

in immediate symptoms such as breathing difficulties, 

respiratory system injury, and a burning sensation in 

the nose, throat, and lungs. Severe and long-term 

health effects include early death, heart and lung 

disease, dementia, and problems with conception [4]. 

They also have diminished cognitive function. Aside 

from the harmful effects on human health, every 

combustion process that releases SO2 releases large 

volumes of greenhouse gases into the environment. 

SO2 sources thus have a disadvantageous immediate 

consequence on the region’s health and a negative 

long-term impact on human well-being globally due to 

greenhouse gas emissions, which drive global 

warming. 

Several SO2 emission control techniques based 

on emission prevention or flue gas capture turned out 

to be investigated, and some came to be implemented 

in sulphur dioxide-discharging industries. Since sulphur 

dioxide emissions are proportional to the amount of 

sulphur in fuel and the total used in combustion, 

reducing sulphur content can result in significant 

reductions. Using ultra-low sulphur flue is the most 

environmentally friendly way to reduce sulphur dioxide 

emissions; however, obtaining cleaner flue comes at a 

high refining cost [4]. Installing a sulphur restoration 

unit that generates profit-making sulphur in the form of 

sulphuric acid is an option if the gas flow consists of a 

high concentration of sulphur and the restoration unit 

can withstand the corrosive environment associated 

with acid sulphur [5]. In industries that use coal as a fuel 

source, sulphur in pyrite (Fe2S) can be easily removed 

by physically washing coal with water. However, 

increased practical costs and fuel-efficient design 

property changes could offset this. Even though many 

treatment methods, including WFGD (FGD), biological 

processes, and technological innovations based on 

electron beam irradiation, can achieve high sulphur 

removal efficiency, several problems still need to be 

solved, including high space requirements and high 

safety protection requirements [6]. Coronal pulse 

discharge, on the other hand, is a relatively new and 

unproven SO2 removal method, even though it does not 

require a particle accelerator and offers the highest 

level of protection. Because of its simplicity and high 

desulphurization capacity, flue gas desulphurization 

(FGD) is the most frequently used method to reduce 

SO2 emissions [7].  

A variety of sorbents that are various chemical 

compounds and naturally occurring materials can be 

quickly produced, or waste generated by a variety of 

processes can be used in the method. Several flue gas 

desulphurization (FGD) techniques are water- self-

sufficient, resulting in lower operating costs and no 

wastewater production. It is necessary to utilize the 

proper Flue Gas Desulphurization (FGD) technology to 

reduce SO2 emissions into the environment [8]. Coal 

combustion produces coal fly ash, another type of 

combustion waste, and pollutants like sulphur dioxide 

(SO2). Researchers have looked into flue gas 

desulphurization using absorbent synthesis from a 

combination of calcium hydroxide, calcium oxide, and 

calcium sulphate to address these difficulties [9]. 

Numerous studies have shown that, for instance, when 

coupled with Ca (OH)2 or CaO during the hydration 

process, coal ash can create an absorbent with a higher 

SO2 capture capacity than hydrate lime [2,8,10].  

Blast Furnace Slag (BFS), a byproduct of the iron 

and steel industry, has promise as a practical and 

affordable substitute sorbent for flue gas 

desulphurization technology. The two main ingredients 

for removing SO2 are abundant in BFS: CaO and silica. 

They produce Calcium Silicate Hydrate Aggregates, 

which are essential for increasing the surface area of 

the Sorbent. According to some studies, sorbent made 

of iron blast furnace slag and hydrated lime (BFS/HL) 

exhibits higher SO2 reactivity than hydrated lime alone 

under the dry or semi-dry FGD method [4]. It is clear 

from earlier sources that the production of high surface 

area calcium silicate hydrates during the sorbent 

preparation or slurring process is caused by an 

enhancement in the sorbent's reactivity patterns, using 

calcium, or the capacity to capture SO2 [4]. 

When a dependent output variable is impacted by 

several independent input factors rather than one factor 

at a time, the response surface methodology is a 

statistical method for optimizing the process [11]. The 

output variable's name is the response. RSM assesses 

all process factors concurrently while predicting an 

outcome as an improved systematic approach to 

experimentation. The central composite design is one 

of the critical components of RSM. The experiments 

used a three-level experimental design called the 

central composite design, which combined the axial 

and factorial design points. Its key benefit is that it 

demands multiple experimental runs to determine the 
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proper conditions for experimentation [12]. 

A model of computation called an artificial neural 

network can be used to predict how biological neurons 

process input. Most neural network models feature 

hidden layers in addition to input and output layers; the 

number depends on the inquiry type of investigation [8]. 

The primary property of a neural network is its ability to 

carry out internal calculations to derive the desired 

output from a set of input data. Given enough data, the 

ANN can evaluate multifactorial, non-linear, linear, and 

complex procedures by training the multiple input-

output networks technique [13,14]. Because it reliably 

and effectively depicts the non-linear interactions 

between the variables and responses of various 

processes, ANN may be used in intricate systems [15]. 

In the current study, the surface area was 

assessed by BET analysis by investigating the effect of 

BFS amount, the ammonium acetate amount, hydration 

time, and hydration temperature. With the fewest 

experiments, the RSM approach enables the study of 

the individual variables and their combined impacts in 

the experimental range. This study's main objective is 

to evaluate the surface area of BFS for SO2 capture 

using RSM and ANNs, estimate their effectiveness, and 

compare ANN and RSM techniques. The experimental 

data was then compared to the outcomes of the two 

models. 

 
 
MATERIALS AND METODS 

Raw materials 

The Blast furnace slag was collected from a local 

company around Vanderbijlpark, South Africa. The 

ammonium acetate (>98%) and the calcium oxide 

(>97%) were all purchased from Merck, and the brine 

sludge was collected from a local chloral alkali industry. 

Sorbent preparation of the sorbent 

A known quantity (250 g) of brine sludge was 

heated for 4 hours, and 900 °C was set as the 

temperature in a furnace with muffles for maximal 

calcination. 200 mL of distilled water was heated to 

65 °C, and 10 g of CaO was added while vigorously 

agitated. A certain amount (0—1 g) of ammonium 

acetate as the hydration agent and blast furnace slag 

(0—5 g) were added to the slurry at the same time. The 

hydration process was then accelerated by heating the 

blast furnace slag slurry for a set amount of time           

(1—10 hours) at a certain hydration temperature        

(30—90 °C). The resulting slurry underwent filtration for 

2 hours at 210 °C during drying. The powdered 

sorbents were pelletized, smashed, and crushed to less 

than 75 μm to produce the required nanoparticle size. 

 

Characterization of the sorbent 

The functional compounds contained in the 

sorbent were examined using Fourier transform 

infrared spectroscopy (PerkinElmer UATR). Scanning 

electron microscopy (Philips XL30FEG) was employed 

to assess the shape of the surface. X-ray fluorescence 

(Philips expert 0993) was used for qualitative as well as 

quantitative techniques. The materials' BET surface 

area and pore volume were measured using an N2 

sorption-desorption apparatus and ASAP 2020 

Micromeritics. 

Analysis using artificial neural networks and the 
response surface approach 

Centrale composite design in Response surface 
methodology 

Recent years have seen a rise in interest in 

response surface methodology (RSM), a set of 

mathematical and statistical methods for assessing the 

effects of numerous independent variables. RSM 

assesses the relationships between the response(s) 

and the independent variables, in addition to the effects 

of individual variables on the processes, whether 

operating alone or in conjunction [11]. This approach 

provides many benefits, including being less costly, 

requiring fewer experiments, exploring how different 

factors interact to affect response, predicting a 

response, assessing method suitability, and consuming 

less time [16]. This strategy employs low-order 

polynomial equations in a predefined area of the 

independent variables to attempt to find the optimal 

values for the independent variables for the most 

positive results. The sorbents' BET surface area was 

investigated using the CCD. This design helps assess 

how the sorbent preparation variables affect the 

sorbent's particular surface area. The variables for 

sorbent preparation explored are hydration time, BFS 

amount, hydrating agent (ammonium acetate) amount, 

and hydration temperature. The RSM analysis consists 

of 21 experimental data sets, with six central points. 

According to Eq. (1), the response was calculated 

using an empirical second-order polynomial equation. 

2 2

2 2

0z X XaA XbB XcC XdD XaaA XbbB

XccC XddD XabAB XacAC XadAD

XbcBC XbdBD XcdCD

= + + + + + + +

+ + + + +

+ +

     (1) 

where Z is the predicted outcome; X0 denotes the 

model constant; Xa, Xb, Xc, and d denote linear 

coefficients; Xab, Xac, Xad, Xbd, and Xcd denote 

cross-product coefficients, and Xaa, Xbb, Xcc, and Xdd 

denote quadratic coefficients. A, B, C, and D denote 

independent variables. 
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The experimental design, analysis of variance, 

regression analysis, and optimization of process 

parameters in the desulphurization process were 

carried out using Design-Expert 13. ANOVA p-value 

and the regression coefficient (R2) were used to assess 

the model's acceptability. 

The steps in the optimization process are as 

follows: choosing the process variables and responses; 

choosing the experimental design; conducting 

experiments to gather data; fitting the model equation 

to the experimental data; performing an analysis of 

variance (ANOVA); and finally, determining the optimal 

conditions [17]. 

Artificial neural network (Levenberg-Marquardt) 

Three-layer system: one neuron on the output 

layer, one hidden layer with six different modes, four 

neurons on the input layer, and measurements of 

hydration temperature, BFS, and ammonium acetate 

(4-6-1). The most common network, known as a back-

propagation (BP-ANN) network, trains an approach for 

modeling data from experiments using a first-order 

gradient descent technique. It works well to cut down 

on errors with each repeat. Out of various back-

propagation (BP) methods, we chose the Marquardt-

Levenberg learning strategy. In the simulation and 

prediction of the sorbent production using ANN, the log-

sigmoid function of transfer (log sig) in the layer that 

was hidden with four neurons in the first layer and a 

linear transfer function in the output node were both 

used. Modular artificial neural networks were 

developed using the Neural Networks (NN) toolbox and 

the mathematical application MATLAB 2022a. The 

ANN model's configuration processes involve the 

following steps: collecting data, training and test set 

selection, conversion of data into ANN inputs, 

identifying, training, and testing network structures, if 

necessary, repeating the processes several times to 

get the best model, and implementation of the best 

ANN model [13]. 

Error analysis functions 

The Root mean square error (RMSE), Mean 

square errors (MSE), Average relative errors (ARE), 

Hybrid fractional error function (HYBRID), Sum of 

squares of errors (SSE), and Sum of absolute errors 

(SAE) Statistical evaluation tests were used to prove 

that the models were satisfactory [16]. The non-linear 

methods presented in Eqs. (2—7) were used to compare 

data from experiments with model-predicted data. 
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where N is the total number of measurements, M is the 

maximum amount of model parameters, and Z(p) and 

Z(e) are the expected and measured values, expressed 

as m2/g, respectively. 

 
 
RESULTS AND DISCUSSION 

The morphological analysis 

Figure 1a depicts the morphological appearance 

of the blast furnace using SEM. An irregularly shaped 

structure of various sizes with a smooth surface was 

readily seen in the sample. The increased 

magnification shows the high structural porosity of the 

particle. Figure 1b shows SEM micrographs of sorbents 

after treatment. Before sulphation, the sorbent's overall 

pore structure and irregularly shaped particle 

arrangement are seen in the image. The sorbent has 

open spaces, implying that sulphation reactions can 

occur [8]. 

 
Figure 1. SEM of (a) the blast furnace and (b) after treatment. 

Fourier-transform infrared spectroscopy Analysis 

Figure 2 shows the antisymmetric vibration of the 

Ca-O and Si-O-Si bonds due to the strong, intense 

peak between 570 and 1100 cm-1 in the raw blast 

furnace slag. Because of the presence of calcium 
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hydroxide, the hydroxyl group is thought to be 

stretching vibrational bonds around 3500 cm-1, which is 

related to the weak absorption band. In all the figures, 

the absorption peak associated with the C-O vibrations 

in the carbonate structure can be seen at 1600 cm-1 

and roughly 700 cm-1. The Ca-O vibration bond is 

attributed to the significant absorption band at              

587 cm-1. Silica and calcium oxide, which are essential 

in expanding the surface area of the sorbents, are 

among the components that make up the functional 

group present [4]. 

 
Figure 2. FTIR of the blast furnace slag. 

X-Ray Fluorescence analysis 

Table 1 below provides the chemical breakdown 

of BFS before and after treatment as determined by 

XRF analysis. The total element found in blast furnace 

slag makes up most of the complex heterogeneous 

substance known as BFS. After treatment, some 

elements are absent in the sorbent due to the 

sulphation and calcination process reaction. 

Table 1. The elemental composition of the sorbent. 

Before treatment After treatment 

Element Line Mass % Atom % Mass % Atom % 

C K 7.78 24.63 23.32 39.59 
O K 5.09 11.99 33.23 42.19 
Mg K 0.52 0.8 1.11 0.92 
Si K 1.72 2.32   
S K 14.36 16.91   
Ca K 4.11 3.88 34.13 17.3 
Mn K 47.42 32.58   
Fe K 8.85 5.95   
Au M 11.69 2.24 9.5 0.98 

Response surface plots 

A CCD was used to assess the impact of four 

experimental factors on the area region of an absorbing 

material made from blast furnace slag. The resulting 

sorbent's surface area corresponding to Brunauer-

Emmett-Teller (BET) was investigated. The sorbents 

produced range in surface area from 49.89 to         

155.33 m2/g. The surface area of the sorbent is a 

function of hydration temperature and ammonium 

acetate content. Figure 3a illustrates the variations in 

absorbing material surface dimensions as a function of 

the ammonium acetate concentration (B) and hydration 

temperature (D). The sorbent surface area significantly 

increases when large volumes of ammonium acetate 

are employed. The production of Very significant 

hydroxyl complexes having a wide area of contact is 

facilitated by hydrating agents, which may be the cause 

for this. Although high temperatures raise the sorbent's 

surface area, when the reaction time is lengthened, the 

sorbent's surface area also grows over time [18]. The 

pozzolanic reaction has been reported to create 

calcium silicate-hydrated compounds at higher 

temperatures and longer hydration times [19]. 

Figure 3b shows how the sorbent surface area 

changes; it expands when the ammonium acetate level 

is significant. This demonstrates unequivocally that the 

moisturizing agent ammonium acetate enhances the 

hydration level of a hydroxide aggregate with a large 

surface area. The surface area of the sorbent also 

increases with the addition of more blast furnace slag. 

The phenomenon is explained by the fact that when 

more bagasse is used, calcium oxide and more silica 

are combined, producing more calcium silicate [20]. 

 

Figure 3. The interaction between (a) temperature and ammonium 

acetate and (b) blast furnace slag and ammonium acetate on the 

surface area. 

Eq. (8) is produced by the final model displayed 

below after Fisher's Test is used to exclude the 

irrelevant terms. 

2 2 2

2

 110.42 27.69 44.89 7.98

45.13 40.48 3.43 28.96 0.4900

28.91 10.29 12.21 20.57 15.11

11.31

Surface area A B C

D AB AC AD BC

BD CD A B C

D

= + + + − +

+ − + + +

− + − + −

     (8) 

By contrasting the factor coefficients, the coded 

equation can be used to determine the relative 

importance of the elements. A positive sign in front of 

the phrases indicates a synergistic influence, whereas 

an antagonistic influence is shown by a negative sign 

[11]. The results of these statistical tests indicate that 

the regression model equations properly show the link  
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between the important experimental parameters and 

the surface area of the sorbent. It is evident through 

regression analysis that the coefficient for hydration 

temperature (D) is the largest of all the variables. 

Therefore, we can conclude that this variable 

significantly impacts the surface area of sorbents made 

from blast furnace slag. 

The analysis of variance (ANOVA) was used to 

confirm that the model was adequate by testing for 

variance-based variations in means between two or 

more category groups; an ANOVA test is a sort of 

statistical test used to assess if there is a statistically 

significant difference variable. Table 3 displays this at a 

95% confidence level. The third-order algebraic 

equation was put to the test. A regularly distributed 

continuous dependent variable and two or more 

categorical independent variables (factors) make up a 

two-way ANOVA (analysis of variance). The model is 

suggested to be significant by the model's F-value of 

13.56. An F-value this big might happen owing to noise 

only 0.21% of the time [21]. 

When the P-value is less than 0.0500, model 

terms are regarded to be significant. A, B, C, D, AB, AD, 

BD, CD, and B2 are crucial model terms. If the value 

exceeds 0.1000, model terms are not significant. If your 

model includes many unnecessary terms (apart from 

those required to maintain hierarchy), removing them 

may improve the performance. The lack of fit F-value of 

45.31 suggests that the lack of fit is considerable. Noise 

can result in a substantial Lack of Fit F-value only 

0.18% of the time. A significant lack of fit in the model 

is undesirable since we want it to fit. Temperature (D) 

possessed a major impact on surface area (C) relative 

to ammonium acetate content (A). In contrast to 

variables A and B, the quadratic terms D greatly 

impacted the surface of the absorbent area. The C 

variable has very minimal influence on the surface 

region of the sorbent. The absorbing material surface 

region is unaffected by the cubic expression. The 

interaction between components B and C does not 

significantly affect the surface area.  

While the other stayed constant, the impact of one 

factor was assessed and plotted versus surface area. 

Compared to the other three criteria, hydration 

substantially affected surface area more. Ammonium 

acetate concentration came next, and then the impact 

of time and hydration on blast furnace slag. The surface 

area rises with temperature and ammonium acetate 

concentrations. Raising hydration length and hydration 

time has little effect on surface area [8]. Table 2 also 

exhibits the impact. A high F-value for the hydration 

temperature indicates that it likely significantly impacts 

the surface area. 

Table 2. ANOVA. 

Source Sum of Squares df Mean Square F-value p-value  

Model 15353.31 14 1096.67 13.56 0.0021 significant 
A-Blast furnace slag 1532.92 1 1532.92 18.95 0.0048  
B-Ammonium acetate 4029.33 1 4029.33 49.81 0.0004  
C-Time 636.36 1 636.36 7.87 0.0310  
D-Temperature 4073.79 1 4073.79 50.36 0.0004  
AB 2621.42 1 2621.42 32.41 0.0013  
AC 94.12 1 94.12 1.16 0.3222  
AD 1341.89 1 1341.89 16.59 0.0066  
BC 1.92 1 1.92 0.0237 0.8826  
BD 1337.26 1 1337.26 16.53 0.0066  
CD 847.07 1 847.07 10.47 0.0178  
A² 380.84 1 380.84 4.71 0.0731  
B² 1079.75 1 1079.75 13.35 0.0107  
C² 582.46 1 582.46 7.20 0.0364  
D² 326.49 1 326.49 4.04 0.0913  
Residual 485.35 6 80.89    
Lack of Fit 464.83 2 232.41 45.31 0.0018 significant 

R2 = 0.952; R2 Predicted = 0.925; R2 Adjusted = 0. 954. 

 

Artificial Neural network 

The backpropagation method of Levenberg-

Marquardt was used to train the MLP network (4:6:1). 

However, it generally takes more Space, so this 

approach is quicker. This happens when the validation 

samples' mean square error increases, indicating that 

generalization is no longer improving. The best number 

of neurons in the hidden layer, the best number of 

validation and training data, and the best number of 

testing samples were all determined using this 

technique [13]. Of the 21 samples employed in the ANN 

modeling, 70% (15 samples), 15% (3 samples), and 

15% (3 samples) were used for training, testing, and 

training validation, respectively. The network's 

interactions with training, testing, and validation data 

are depicted in Figure 4. Correlation coefficients for 

training, testing, validation, and total data were 

determined to be 0.999, 0.994, 0.964, and 0.992, 

respectively. The straight line also demonstrates a 

linear relationship. The experimental (goal) and 

forecasted (output) results are related. The results 

suggest high agreement between the actual data and  
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the data predicted by the model. Therefore, the 

coefficient of total correlation reveals the excellent 

prediction capacity of the developed ANN model, 

making it suitable for correctly predicting data [22]. 

 
Figure 4. Neural network regression analysis. 

Predicted and actual data RSM and ANN 

The actual (experimental) and anticipated values 

for the surface area are compared and statistically 

analyzed in Table 3. According to the results, both 

models can adequately predict the surface area. The 

RMSE, MSE, ARE, HYBRID, SSE, SAE, and R2 values 

for the RSM model were all found to be 0.065, 0.049, 

0.024, 0.314, 0.018, 0.198 and 0.952, respectively, 

whereas the ANN model was found to be 0.009, 0.020, 

0.012, 0.188, 0.06, 0.110 and 0.992. Both models 

provide relevant statistical data, according to statistics, 

indicating that they may be used in this procedure [15]. 

The accuracy of the RSM and ANN techniques in 

displaying actual and expected results is seen in 

Table 3. The linear fit also shows both models' 

remarkable capabilities. Although both models can 

predict the surface, the ANN model displayed better 

RMSE, MSE, ARE, HYBRID, SSE, SAE, and R2 values. 

Both models could accurately predict the 

sorbent's surface area, the Response surface method, 

and the Artificial neural network. The artificial neural 

network (ANN) was implemented in Table 4 to 

maximize the sorbent's surface area [15]. 

Table 3. Comparison of artificial neural networks (ANN) and Response surface method (RSM). 

Run Blast  furnace slag (g) Ammonium acetate (g) Hydration period (hrs) Hydration temperature (℃) 
Surface area(m2/g) 

RSM ANN 

1 5 1 8 30 112.71 113.22 

2 5 1 2 30 116.62 116.98 

3 5 0 8 90 68.6 70.25 

4 0 1 2 90 142.18 145.24 

5 5 0 2 90 115.64 115.96 

6 0 0 8 30 89.18 90.01 

7 0 1 8 90 110.74 112.25 

8 0 0 2 30 81.34 80.97 

9 0 0.5 5 60 99.96 100.00 

10 5 0.5 5 60 155.33 156.32 

11 2.5 0 5 60 49.96 50.98 

12 2.5 1 5 60 139.75 140.21 

13 2.5 0.5 2 60 133.18 135.29 

14 2.5 0.5 8 60 127.69 130.39 

15 2.5 0.5 5 30 58.99 60.28 

16 2.5 0.5 5 90 149.25 150.22 

17 2.5 0.5 5 60 104,46 105.85 

18 2.5 0.5 5 60 101.48 100.40 

19 2.5 0.5 5 60 105.17 105.98 

20 2.5 0.5 5 60 107.60 108.95 

21 2.5 0.5 5 60 103.34 105.37 

    RMSE 0.065 0.009 

    MSE 0.049 0.020 

    ARE 0.024 0.012 

    HYBRID 0.314 0.188 

    SSE 0.018 0.006 

    SAE 0.198 0.110 

    R2 0.952 0.992 

Table 4. The optimum predicted conditions. 

Variables  Values 

Reaction time 5 h 
Reaction temperature 60°C 
Ammonium acetate 0.5 g 
BFS  5 g 
Surface area  150.00 m2/g 
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CONCLUSION 

This study demonstrated that it is possible to 

prepare sorbent for DFGD. SEM micrographs indicated 

high porosity and open spaces, which show that there 

is room for sulphation reaction. Silica and calcium oxide 

were identified in the functional group that was 

observed on the FTIR. The results show that when blast 

furnace slag is employed as a pozzolan substance, a 

pozzolanic reaction occurs that results in aggregation 

of hydrated calcium silicates, expanding the area of the 

sorbent's surface. RSM analysis revealed that the 

sorbent preparation variables significantly affect the 

final sorbent surface area. Higher blast furnace slag 

and ammonium acetate content increased surface 

area; a moderate rise was seen at high temperatures 

and during lengthy hydration time. A quadratic model 

was developed to link the independent variables and 

the surface area. The RMSE, MSE, ARE, HYBRID, 

SSE, SAE, and R2 values for the RSM model were all 

found to be 0.065, 0.049, 0.024, 0.314, 0.018, 0.198 

and 0.952, respectively, whereas the ANN model 

generated 0.009, 0.020, 0.012, 0.188, 0.06, 0.110 and 

0.992. This can be due to the small number of datasets 

available for application. Working with a lot of different 

data sets may be more effective for the ANN model. 
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ABBREVIATION 

ANN Artificial neural network 

BFS Blast furnace slag 

RMSE Root means square errors 

ARE Average relative errors 

MSE Mean square errors 

CCD Central composite design 

BP Back-propagation 

FGD Flue gas desulphurization 

DFGD Dry flue gas desulphurization 

WFGD Wet flue gas desulphurization 

LM Levenberg-Marquardt model 

ML Multilayer perceptron 

HL Hydrated lime 

MPSD Derivative of Marquardt’s percent standard deviation 

RMSE Root means square errors 

BP Back-propagation 

LM Levenberg-Marquardt model 
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NAUČNI RAD 

ŠLJAKA VISOKE PEĆI ZA HVATANJE SO2: 
OPTIMIZACIJA I PREDVIĐANJE POMOĆU 
METODOLOGIJE POVRŠINE ODZIVA I 
VEŠTAČKE NEURONSKE MREŽE 

 
Glavni istraživani reakcioni parametri bili su količina šljake visoke peći, trajanje 

hidratacije, koncentracija amonijum-acetata i temperatura. Metodologija površine odziva 

(MPO) u kombinaciji sa centralnim kompozitnim planom je korišćena za kvantifikovanje 

njihovog uticaj na površinu sorbenta po Brunauer-Emet-Teleru (BET). Površina dobijenhi 

sorbenata se kreću od 49,89 do 155,33 m2/g. Pored toga, istražena su efikasnost i 

kapaciteti predviđanja odgovora metodologija MPO i veštačke neuronske mreže (VNM). 

Modeli su procenjeni korišćenjem različitih statističkih metrika, uključujući srednju 

kvadratnu grešku, prosečnu relativnu grešku, (SSE) zbir kvadratnih grešaka, hibridnu 

funkciju frakcione greške, zbir apsolutnih grešaka, koeficijent determinacije, a koren 

srednje kvadratne vrednosti. Prema statističkim dokazima, VNM model je nadmašio 

pristup MPO modela. Pokazalo se da na površinu sorbenta značajno utiču interakcije 

između faktora pored svih pojedinačnih faktora. Prema SEM-u, sorbent je napravljen od 

materijala sa značajnom strukturnom poroznošću. Funkcionalne grupe su identifikovane 

korišćenjem FTIR. Rentgenskm analizom je određen elementarni sastav sorbenata. 

Ključne reči: šljaka visoke peći, optimizacija, centralni kompozitni plan, veštačka 
neuronska mreža, metodologija površine odziva. 
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