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Abstract 

The main reaction parameters examined were the amount of blast furnace slag, the hydration 

duration, ammonium acetate concentration, and temperature. The Response surface methodology 

was employed to quantify their impact on the sorbent's surface area. Using a central composite 

design, the surface area of the resulting sorbent corresponding to Brunauer- Emmett-Teller (BET) 

was investigated. The sorbents produced range in surface area from 49.89 to    155.33 m2/g.

Additionally, the effectiveness and response prediction capacities of the Response Surface 

Methodology (RSM) and Artificial Neural Network (ANN) modeling methodologies were 

investigated. The models were assessed using various statistical metrics, including (MSE) mean 

squared error, (ARE) average relative errors, the (SSE) sum of squared errors, (HYBRID) Hybrid 

fractional error function, (SAE) Sum of the absolute errors, (R2)coefficient of determination, and

Root means square. According to statistical evidence, the ANN approach surpassed the RSM-CCD 

model approach. The surface area of the sorbent was shown to be significantly influenced by 

interactions between variables in addition to all the individual variables examined. The sorbent 

was made from a material with substantial structural porosity based on SEM. The functional 

groups were identified using FTIR. The XRF determined the elemental composition of BFS-based 

sorbents. 

Keywords: Blast furnace slag, optimization, Central composite design, Artificial neural network, 

Response surface methodology. 
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• The combined optimization and prediction approach for optimum performance



INTRODUCTION 

The control of atmospheric pollution brought on by combustion processes like coal has recently 

been subject to stricter environmental restrictions worldwide. The most plentiful and cost-

effective energy source is coal, essential for supplying the world's rising need for electricity [1]. 

Burning coal provides various difficulties even if it is a significant energy source. The discharge 

of pollutants, particularly sulphur dioxide, into the environment is one of the most critical 

problems facing enterprises that burn coal. Sulphur in coal combines with air during combustion 

to create sulphur dioxide (SO2). Sulphur dioxide is one of the many contaminants in our 

atmosphere (SO2) [2]. Burning things containing sulfur releases a harmful gas into the 

atmosphere. All types of coal and oil include sulphur. Industrial facilities that use fossil fuels to 

produce energy or extract metal from ore are the primary sources of SO2 emissions (smelter). 

Other anthropogenic sources include locomotives, ships, and other large vehicles or equipment 

that burn sulphur-rich fuel. Volcanoes are the sole crucial natural source of SO2. Only roughly 

one-third of all SO2 emissions into the atmosphere come from volcanoes. Volcanic SO2 has little 

effect in South Africa because no active volcanoes exist [3]. 

Both direct SO2 exposure and secondary pollutants created when SO2 combines with other 

airborne molecules negatively affect health. A significant secondary contaminant associated with 

SO2 is delicate particulate matter. Exposure to SO2 results in immediate symptoms such as 

breathing difficulties, respiratory system injury, and a burning sensation in the nose, throat, and 

lungs. Severe and long-term health effects include early death, heart and lung disease, dementia, 

and problems with conception [4]. They also have diminished cognitive function. Aside from the 

harmful effects on human health, every combustion process that releases SO2 releases large 

volumes of greenhouse gases into the environment. SO2 sources thus have a disadvantageous 

immediate consequence on the region’s health and a negative long-term impact on human well-

being globally due to greenhouse gas emissions, which drive global warming.   

Several SO2 emission control techniques based on emission prevention or flue gas capture turned 

out to be investigated, and some came to be implemented in sulphur dioxide-discharging 

industries. Since sulphur dioxide emissions are proportional to the amount of sulphur in fuel and 

the total used in combustion, reducing sulphur content can result in significant reductions. 

Using ultra-low sulphur flue is the most environmentally friendly way to reduce sulphur 



dioxide emissions; however, obtaining cleaner flue comes at a high refining cost [4]. Installing a 

sulphur restoration unit that generates profit-making sulphur in the form of sulphuric acid is an 

option if the gas flow consists of a high concentration of sulphur and the restoration unit can 

withstand the corrosive environment associated with acid sulphur [5]. In industries that use coal 

as a fuel source, sulphur in pyrite (Fe2S) can be easily removed by physically washing coal with 

water. However, increased practical costs and fuel-efficient design property changes could offset 

this. Even though many treatment methods, including WFGD (FGD), biological processes, and 

technological innovations based on electron beam irradiation, can achieve high sulphur removal 

efficiency, several problems still need to be solved, including high space requirements and high 

safety protection requirements [6]. Coronal pulse discharge, on the other hand, is a relatively new 

and unproven SO2 removal method, even though it does not require a particle accelerator and 

offers the highest level of protection. Because of its simplicity and high desulphurization capacity, 

flue gas desulphurization (FGD) is the most frequently used method to reduce SO2 emissions [7].  

A variety of sorbents that are various chemical compounds and naturally occurring materials can 

be quickly produced, or waste generated by a variety of processes can be used in the method. 

Several flue gas desulphurization (FGD) techniques are water- self-sufficient, resulting in lower 

operating costs and no wastewater production. It is necessary to utilize the proper Flue Gas 

Desulphurization (FGD) technology to reduce SO2 emissions into the environment [8]. Coal 

combustion produces coal fly ash, another type of combustion waste, and pollutants like sulphur 

dioxide (SO2). Researchers have looked into flue gas desulphurization using absorbent synthesis 

from a combination of calcium hydroxide, calcium oxide, and calcium sulphate to address these 

difficulties [9]. Numerous studies have shown that, for instance, when coupled with Ca (OH)2 or 

CaO during the hydration process, coal ash can create an absorbent with a higher SO2 capture 

capacity than hydrate lime [2,8,10].  

Blast Furnace Slag (BFS), a byproduct of the iron and steel industry, has promise as a practical 

and affordable substitute sorbent for flue gas desulphurization technology. The two main 

ingredients for removing SO2 are abundant in BFS: CaO and silica. They produce Calcium Silicate 

Hydrate Aggregates, which are essential for increasing the surface area of the Sorbent. According 

to some studies, sorbent made of iron blast furnace slag and hydrated lime (BFS/HL) exhibits 

higher SO2 reactivity than hydrated lime alone under the dry or semi-dry FGD method [4]. It is 



clear from earlier sources that the production of high surface area calcium silicate hydrates during 

the sorbent preparation or slurring process is caused by an enhancement in the sorbent's reactivity 

patterns, using calcium, or the capacity to capture SO2 [4]. 

When a dependent output variable is impacted by several independent input factors rather than 

one factor at a time, the response surface methodology is a statistical method for optimizing the 

process [11]. The output variable's name is the response. RSM assesses all process factors 

concurrently while predicting an outcome as an improved systematic approach to 

experimentation. The central composite design is one of the critical components of RSM. The 

experiments used a three-level experimental design called the central composite design, which 

combined the axial and factorial design points. Its key benefit is that it demands multiple 

experimental runs to determine the proper conditions for experimentation [12]. 

A model of computation called an artificial neural network can be used to predict how biological 

neurons process input. Most neural network models feature hidden layers in addition to input and 

output layers; the number depends on the inquiry type of investigation [8]. The primary property 

of a neural network is its ability to carry out internal calculations to derive the desired output 

from a set of input data. Given enough data, the ANN can evaluate multifactorial, non-linear, 

linear, and complex procedures by training the multiple input-output networks technique [13,14]. 

Because it reliably and effectively depicts the non-linear interactions between the variables and 

responses of various processes, ANN may be used in intricate systems [15]. 

In the current study, the surface area was assessed by BET analysis by investigating the effect of 

BFS amount, the ammonium acetate amount, hydration time, and hydration temperature. With the 

fewest experiments, the RSM approach enables the study of the individual variables and their 

combined impacts in the experimental range. This study's main objective is to evaluate the surface 

area of BFS for SO2 capture using RSM and ANNs, estimate their effectiveness, and compare 

ANN and RSM techniques. The experimental data was then compared to the outcomes of the two 

models.  

 

EXPERIMENTAL   

Raw materials  

The Blast furnace slag was collected from a local company around Vanderbijlpark, South Africa. 



The ammonium acetate (>98%) and the calcium oxide (>97%) were all purchased from Merck, 

and the brine sludge was collected from a local chloral alkali industry.  

Sorbent preparation of the sorbent  

A known quantity (250 g) of brine sludge was heated for 4 hours, and 900 °C was set as the 

temperature in a furnace with muffles for maximal calcination. 200 mL of distilled water was 

heated to 65 °C, and 10 g of CaO was added while vigorously agitated. A certain amount (0 -1 g)of 

ammonium acetate as the hydration agent and blast furnace slag (0–5 g) were added to the slurry at the 

same time. The hydration process was then accelerated by heating the blast furnace slag slurry for a 

set amount of time (1–10 hours) at a certain hydration temperature (30–90 °C). The resulting slurry 

underwent filtration for 2 hours at 210°C during drying. The powdered sorbents were pelletized, 

smashed, and crushed to less than 75 μm to produce the required nanoparticle size. 

Characterization of the sorbent  

The functional compounds contained in the sorbent were examined using Fourier transform 

infrared spectroscopy (PerkinElmer UATR). Scanning electron microscopy (Philips XL30FEG) 

was employed to assess the shape of the surface. X-ray fluorescence (Philips expert 0993) was 

used for qualitative as well as quantitative techniques. The materials' BET surface area and pore 

volume were measured using an N2 sorption-desorption apparatus and ASAP 2020 Micromeritics. 

Analysis using artificial neural networks and the response surface approach 

Centrale composite design in Response surface methodology 

Recent years have seen a rise in interest in response surface methodology (RSM), a set of 

mathematical and statistical methods for assessing the effects of numerous independent variables. 

RSM assesses the relationships between the response(s) and the independent variables, in addition 

to the effects of individual variables on the processes, whether operating alone or in conjunction 

[11]. This approach provides many benefits, including being less costly, requiring fewer 

experiments, exploring how different factors interact to affect response, predicting a response, 

assessing method suitability, and consuming less time [16]. This strategy employs low-order 

polynomial equations in a predefined area of the independent variables to attempt to find the 

optimal values for the independent variables for the most positive results. The sorbents' BET 

surface area was investigated using the CCD. This design helps assess how the sorbent preparation 

variables affect the sorbent's particular surface area. The variables for sorbent preparation explored 



are hydration time, BFS amount, hydrating agent (ammonium acetate) amount, and hydration 

temperature. The RSM analysis consists of 21 experimental data sets, with six central points. 

According to Equation 1, the response was calculated using an empirical second-order polynomial 

equation. 

 

z = X0 +  XaA +  XbB +  XcC +  XdD + Xaa𝐴2 +  Xbb𝐵2 +  Xcc𝐶2 +  Xdd𝐷2  + XabAB +

 XacAC +  XadAD +  XbcBC +  XbdBD +  XcdCD                                                                     (1)   

where Z is the predicted outcome, X0 denotes the model constant, Xa, Xb, Xc, and d denote linear 

coefficients, Xab, Xac, Xad, Xbd, and Xcd denote cross-product coefficients, and Xaa, Xbb, Xcc, 

and Xdd denote quadratic coefficients. A, B, C, and D denote independent variables. 

The experimental design, analysis of variance, regression analysis, and optimization of process 

parameters in the desulphurization process were carried out using Design-Expert 13. ANOVA p-

value and the regression coefficient (R2) were used to assess the model's acceptability. 

The steps in the optimization process are as follows: choosing the process variables and responses; 

choosing the experimental design; conducting experiments to gather data; fitting the model 

equation to the experimental data; performing an analysis of variance (ANOVA); and finally, 

determining the optimal conditions [17]. 

Artificial neural network (Levenberg-Marquardt) 

Three-layer system: one neuron on the output layer, one hidden layer with six different modes, 

four neurons on the input layer, and measurements of hydration temperature, BFS, and ammonium 

acetate (4-6-1). The most common network, known as a back-propagation (BP-ANN) network, 

trains an approach for modeling data from experiments using a first-order gradient descent 

technique. It works well to cut down on errors with each repeat. Out of various back-propagation 

(BP) methods, we chose the Marquardt-Levenberg learning strategy. In the simulation and 

prediction of the sorbent production using ANN, the log-sigmoid function of transfer (log sig) in 

the layer that was hidden with four neurons in the first layer and a linear transfer function in the 

output node were both used. Modular artificial neural networks were developed using the Neural 

Networks (NN) toolbox and the mathematical application MATLAB 2022a. The ANN model's 

configuration processes involve the following steps: collecting data, training and test set selection, 

conversion of data into ANN inputs, identifying, training, and testing network structures, if 

necessary, repeating the processes several times to get the best model, and implementation of the 



best ANN model [13]. 

Error analysis functions 

The Root mean square error (RMSE), Mean square errors (MSE), Average relative errors (ARE), 

Hybrid fractional error function (HYBRID), Sum of squares of errors (SSE), and Sum of absolute 

errors (SAE) Statistical evaluation tests were used to prove that the models were satisfactory [16]. 

The non-linear methods presented in Eqs. 2-7 were used to compare data from experiments with 

model-predicted data.     

 RMSE = √
1

N
∑ (

(Z(e)−Z(p) )2

Z(e)
)n

i=1                 (2)  
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MSE =  
1
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where N is the total number of measurements, M is the maximum amount of model parameters, 

and Z(p) and Z(e) are the expected and measured values, expressed as m2/g, respectively. 

 

 

 

 

 

 



RESULT AND DISCUSSION  

The morphological analysis  

Figure 1(a) depicts the morphological appearance of the blast furnace using SEM. An irregularly 

shaped structure of various sizes with a smooth surface was readily seen in the sample. The 

increased magnification shows the high structural porosity of the particle. Figure 1(b) shows SEM 

micrographs of sorbents after treatment. Before sulphation, the sorbent's overall pore structure and 

irregularly shaped particle arrangement are seen in the image. The sorbent has open spaces, 

implying that sulphation reactions can occur [8]. 

Figure 1 

 

Fourier-transform infrared spectroscopy Analysis 
 

Figure 2 shows the antisymmetric vibration of the Ca-O and Si-O-Si bonds due to the strong, 

intense peak between 570 and 1100 cm-1 in the raw blast furnace slag. Because of the presence of 

calcium hydroxide, the hydroxyl group is thought to be stretching vibrational bonds around 3500 

cm-1, which is related to the weak absorption band. In all the figures, the absorption peak associated 

with the C-O vibrations in the carbonate structure can be seen at 1600 cm-1 and roughly 700 cm-

1. The Ca-O vibration bond is attributed to the significant absorption band at 587 cm-1. Silica and 

calcium oxide, which are essential in expanding the surface area of the sorbents, are among the 

components that make up the functional group present [4].  

                                                                     Figure 2 

X-Ray Fluorescence analysis  

Table 1 below provides the chemical breakdown of BFS before and after treatment as determined by 

XRF analysis. The total element found in blast furnace slag makes up most of the complex 

heterogeneous substance known as BFS. After treatment, some elements are absent in the sorbent 

due to the sulphation and calcination process reaction.  

Table 1 

Response surface plots  

A CCD was used to assess the impact of four experimental factors on the area region of an 

absorbing material made from blast furnace slag. The resulting sorbent's surface area 

corresponding to Brunauer-Emmett-Teller (BET) was investigated. The sorbents produced range 

in surface area from 49.89 to 155.33 m2/g. The surface area of the sorbent is a function of hydration 



temperature and ammonium acetate content. Figure 3(a) illustrates the variations in absorbing 

material surface dimensions as a function of the ammonium acetate concentration (B) and 

hydration temperature (D). The sorbent surface area significantly increases when large volumes of 

ammonium acetate are employed. The production of Very significant hydroxyl complexes having 

a wide area of contact is facilitated by hydrating agents, which may be the cause for this. Although 

high temperatures raise the sorbent's surface area, when the reaction time is lengthened, the 

sorbent's surface area also grows over time [18]. The pozzolanic reaction has been reported to 

create calcium silicate-hydrated compounds at higher temperatures and longer hydration times 

[19]. Figure 3(b) shows how the sorbent surface area changes; it expands when the ammonium 

acetate level is significant. This demonstrates unequivocally that the moisturizing agent 

ammonium acetate enhances the hydration level of a hydroxide aggregate with a large surface area. 

The surface area of the sorbent also increases with the addition of more blast furnace slag. The 

phenomenon is explained by the fact that when more bagasse is used, calcium oxide and more 

silica are combined, producing more calcium silicate [20]. 

Figure 3 

Eq. (8) is produced by the final model displayed below after Fisher's Test is used to exclude the 

irrelevant terms. 

Surface area = +110.42 + 27.69A +  44.89B −  7.98C +  45.13D +  40.48AB −

 3.43AC + 28.96AD + 0.4900BC +  28.91BD −  10.29CD +  12.21A² −  20.57B² +

 15.11C² −  11.31D²                                                                                                                  (8) 

By contrasting the factor coefficients, the coded equation can be used to determine the relative 

importance of the elements. A positive sign in front of the phrases indicates a synergistic 

influence, whereas an antagonistic influence is shown by a negative sign [11]. The results of these 

statistical tests indicate that the regression model equations properly show the link between the 

important experimental parameters and the surface area of the sorbent. It is evident through 

regression analysis that the coefficient for hydration temperature (D) is the largest of all the 

variables. Therefore, we can conclude that this variable significantly impacts the surface area of 

sorbents made from blast furnace slag. 

The analysis of variance (ANOVA) was used to confirm that the model was adequate by testing 

for variance-based variations in means between two or more category groups; an ANOVA test is 



a sort of statistical test used to assess if there is a statistically significant difference variable. Table 

3 displays this at a 95% confidence level. The third-order algebraic equation was put to the test. A 

regularly distributed continuous dependent variable and two or more categorical independent 

variables (factors) make up a two-way ANOVA (analysis of variance). The model is suggested to 

be significant by the model's F-value of 13.56. An F-value this big might happen owing to noise 

only 0.21% of the time [21]. 

When the P-value is less than 0.0500, model terms are regarded to be significant. A, B, C, D, AB, 

AD, BD, CD, and B2 are crucial model terms. If the value exceeds 0.1000, model terms are not 

significant. If your model includes many unnecessary terms (apart from those required to maintain 

hierarchy), removing them may improve the performance. The lack of fit F-value of 45.31 suggests 

that the lack of fit is considerable. Noise can result in a substantial Lack of Fit F-value only 0.18% 

of the time. A significant lack of fit in the model is undesirable since we want it to fit. Temperature 

(D) possessed a major impact on surface area (C) relative to ammonium acetate content (A). In 

contrast to variables A and B, the quadratic terms D greatly impacted the surface of the absorbent 

area. The C variable has very minimal influence on the surface region of the sorbent. The absorbing 

material surface region is unaffected by the cubicexpression. The interaction between components 

B and C does not significantly affect the surface area.  

While the other stayed constant, The impact of one factor was assessed and plotted versus surface 

area. Compared to the other three criteria, hydration substantially affected surface area more. 

Ammonium acetate concentration came next, and then the impact of time and hydration on blast 

furnace slag. The surface area rises with temperature and ammonium acetate concentrations. 

Raising hydration length and hydration time has little effect on surface area [8]. Table 2 also 

exhibits the impact. A high F value for the hydration temperature indicates that it likely 

significantly impacts the surface area.  

Table 2 

   

Artificial Neural network  

 

The backpropagation method of Levenberg-Marquardt was used to train the MLP network (4:6:1). 

However, it generally takes more Space, so this approach is quicker. This happens when the 

validation samples' mean square error increases, indicating that generalization is no longer 

improving. The best number of neurons in the hidden layer, the best number of validation and 



training data, and the best number of testing samples were all determined using this technique [13]. 

Of the 21 samples employed in the ANN modeling, 70% (15 samples), 15% (3 samples), and 15% 

(3 samples) were used for training, testing, and training validation, respectively. The network's 

interactions with training, testing, and validation data are depicted in Figure 4. Correlation 

coefficients for training, testing, validation, and total data were determined to be 0.999, 0.994, 

0.964, and 0.992, respectively. The straight line also demonstrates a linear relationship. The 

experimental (goal) and forecasted (output) results are related. The results suggest high agreement 

between the actual data and the data predicted by the model. Therefore, the coefficient of total 

correlation reveals the excellent prediction capacity of the developed ANN model, making it 

suitable for correctly predicting data [22]. 

Figure 4 

Predicted and actual data RSM and ANN  

The actual (experimental) and anticipated values for the surface area are compared and statistically 

analyzed in Table 3. According to the results, both models can adequately predict the surface area. 

The RMSE, MSE, ARE, HYBRID, SSE, SAE, and R2 values for the RSM model were all found 

to be 0.065, 0.049, 0.024, 0.314, 0.018, 0.198 and 0.952, respectively, whereas the ANN model 

was found to be 0.009, 0.020, 0.012, 0.188, 0.06, 0.110 and 0.992. Both models provide relevant 

statistical data, according to statistics, indicating that they may be used in this procedure [15]. The 

accuracy of the RSM and ANN techniques in displaying actual and expected results is seen in 

Table 3. The linear fit also shows both models' remarkable capabilities. Although both models can 

predict the surface, the ANN model displayed better RMSE, MSE, ARE, HYBRID, SSE, SAE, 

and R2 values. 

Table 3 

 

Both models could accurately predict the sorbent's surface area, the Response surface method, and 

the Artificial neural network. The artificial neural network (ANN) was implemented in Table 4 to 

maximize the sorbent's surface area [15].  

Table 4 

 

 

 

 



 

CONCLUSION  

 

This study demonstrated that it is possible to prepare sorbent for DFGD. SEM micrographs 

indicated high porosity and open spaces, which show that there is room for sulphation reaction. 

Silica and calcium oxide were identified in the functional group that was observed on the FTIR. 

The results show that when blast furnace slag is employed as a pozzolan substance, a pozzolanic 

reaction occurs that results in aggregation of hydrated calcium silicates, expanding the area of the 

sorbent's surface. RSM analysis revealed that the sorbent preparation variables significantly affect 

the final sorbent surface area. Higher blast furnace slag and ammonium acetate content increased 

surface area; a moderate rise was seen at high temperatures and during lengthy hydration time. A 

quadratic model was developed to link the independent variables and the surface area. The RMSE, 

MSE, ARE, HYBRID, SSE, SAE, and R2 values for the RSM model were all found to be 0.065, 

0.049, 0.024, 0.314, 0.018, 0.198 and 0.952, respectively, whereas the ANN model generated 

0.009, 0.020, 0.012, 0.188, 0.06, 0.110 and 0.992. This can be due to the small number of datasets 

available for application. Working with a lot of different data sets may be more effective for the 

ANN model.  

 

ABBREVIATION  

ANN: Artificial neural network  

BFS: Blast furnace slag 

RMSE: Root means square errors 

ARE: Average relative errors 

MSE: Mean square errors 

CCD: central composite design 

BP: Back-propagation 

FGD: Flue gas desulphurization 

DFGD: Dry flue gas desulphurization 

WFGD: Wet flue gas desulphurization 

LM: Levenberg-Marquardt model 

ML: Multilayer perceptron 



HL: hydrated lime 

MPSD: Derivative of Marquardt’s percent standard deviation 

RMSE: Root means square errors 

BP: Back-propagation 

LM: Levenberg-Marquardt model 
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Figure captions: 

 

Figure 1. SEM of (a) the blast furnace and (b) after treatment. 

Figure 2. FTIR of the blast furnace slag. 

Figure 3. The interaction between (a) temperature and ammonium acetate and (b) blast furnace slag and 

ammonium acetate on the surface area. 

Figure 4. Neural network regression analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Elemental composition of the sorbent  

Before treatment After treatment 

Element Line Mass % Atom % Mass % Atom % 

C K 7.78 24.63 23.32 39.59 

O K 5.09 11.99 33.23 42.19 

Mg K 0.52 0.8 1.11 0.92 

Si K 1.72 2.32   

S K 14.36 16.91   

Ca K 4.11 3.88 34.13 17.3 

Mn K 47.42 32.58   

Fe K 8.85 5.95   

Au M 11.69 2.24 9.5 0.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2. ANOVA 

 

R2 = 0.952         R2 Predicted = 0.925           R2 Adjusted = 0. 954 

 

 

 

 

 

 

 

 

 

 

 

 

Source Sum of Squares df Mean 

Square 

F-value p-value  

Model 15353.31 14 1096.67 13.56 0.0021 significant 

A-Blast furnace slag 1532.92 1 1532.92 18.95 0.0048  

B-Ammonium acetate 4029.33 1 4029.33 49.81 0.0004  

C-Time 636.36 1 636.36 7.87 0.0310  

D-Temperature 4073.79 1 4073.79 50.36 0.0004  

AB 2621.42 1 2621.42 32.41 0.0013  

AC 94.12 1 94.12 1.16 0.3222  

AD 1341.89 1 1341.89 16.59 0.0066  

BC 1.92 1 1.92 0.0237 0.8826  

BD 1337.26 1 1337.26 16.53 0.0066  

CD 847.07 1 847.07 10.47 0.0178  

A² 380.84 1 380.84 4.71 0.0731  

B² 1079.75 1 1079.75 13.35 0.0107  

C² 582.46 1 582.46 7.20 0.0364  

D² 326.49 1 326.49 4.04 0.0913  

Residual 485.35 6 80.89    

Lack of Fit 464.83 2 232.41 45.31 0.0018 significant 

 



 

 

Table 3. Comparison of artificial neural networks (ANN) and Response surface method (RSM) 

Run Blast  furnace 

slag (g) 

ammonium 

acetate (g) 

Hydration 

period (hrs) 

Hydration 

temperatur

e (℃) 

Surface area(m2/g) 

RSM ANN 

1 5 1 8 30 112.71 113.22 
2 5 1 2 30 116.62 116.98 
3 5 0 8 90 68.6 70.25 
4 0 1 2 90 142.18 145.24 
5 5 0 2 90 115.64 115.96 
6 0 0 8 30 89.18 90.01 
7 0 1 8 90 110.74 112.25 
8 0 0 2 30 81.34 80.97 
9 0 0.5 5 60 99.96 100.00 
10 5 0.5 5 60 155.33 156.32 
11 2.5 0 5 60 49.96 50.98 
12 2.5 1 5 60 139.75 140.21 
13 2.5 0.5 2 60 133.18 135.29 
14 2.5 0.5 8 60 127.69 130.39 
15 2.5 0.5 5 30 58.99 60.28 
16 2.5 0.5 5 90 149.25 150.22 
17 2.5 0.5 5 60 104,46 105.85 
18 2.5 0.5 5 60 101.48 100.40 
19 2.5 0.5 5 60 105.17 105.98 
20 2.5 0.5 5 60 107.60 108.95 
21 2.5 0.5 5 60 103.34 105.37 
    RMSE 0.065 0.009 
    MSE 0.049 0.020 
    ARE 0.024 0.012 
    HYBRID 0.314 0.188 
    SSE 0.018 0.006 
    SAE 0.198 0.110 
    R2 0.952 0.992 

 
 

 

 

 

 

 

 

  



 

Table 4. The optimum predicted conditions 

Variables  values 

Reaction time 5 h 

Reaction temperature 60°C 

Ammonium acetate 0.5 g 

BFS  5 g  

Surface area  150.00 m2/g 
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