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The closed-loop setpoint response of the system shown in Figure1 can is represented as, 

𝑦

𝑦𝑠
=   

𝑔(𝑠)𝑐(𝑠)

𝑔(𝑠)𝑐(𝑠)+1
            (A1) 

Here we have assumed that output measurement y is perfect. In the IMC PID controller, the desired closed-loop 

response will be specified first, and we will develop a controller that matches the desired closed-loop response. 

𝑐(𝑠) =   
1

𝑔(𝑠)

1

(
1

(
𝑦
𝑦𝑠

)−1
)

           (A2) 

We consider the first-order and second-order time delay model g (s) in Eqs. (9) and (11). For the first-order time 

delay model, the desired response can be equated to Eq. (9) 

(
𝑦

𝑦𝑠
)
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

=   
𝑒−𝜃𝑠

𝜏𝑐𝑠+1
            (A3) 

We have kept the delay 𝜃  in the ‘‘desired’’ response, which gives a ‘‘Smith predictor’’ controller and can be 

expressed as  

𝑐(𝑠) =
(𝜏1𝑠+1)

𝐾

1

(𝜏𝑐𝑠+1−𝑒
−𝜃𝑠)

           (A4) 

for FOPDT model  

 𝜏𝑐 = 𝑡𝑢𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑒−𝜃𝑠 = 1 − 𝜃𝑠, First order Taylor series approximation is applied for the delay. The resultant response can be 

expressed as  

𝑐(𝑠) =   
(𝜏1𝑠+1)

𝐾

1

(𝜏𝑐+𝜃)𝑠
             (A5) 

𝑐(𝑠) =   𝐾𝑐(1 +
1

𝜏𝐼𝑠
)           (A6) 
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From the comparison of Eqs. (17) and (18), the parameters can be obtained as 

𝜏𝐼=𝜏1, 𝐾𝑐 =
1

𝐾

𝜏𝐼

(𝜏𝑐+𝜃)
            (A7) 

Similarly, the second-order response with a time constant 𝜏𝑐 can be represented as 

𝑐(𝑠) =   
(𝜏1𝑠+1)(𝜏2𝑠+1)

𝐾

1

(𝜏𝑐𝑠+1−𝑒
−𝜃𝑠)

          (A8) 

After the first-order Taylor series approximation of the delay SOPDT model is represented as 

𝑐(𝑠) =   
(𝜏1𝑠+1)(𝜏2𝑠+1)

𝐾

1

(𝜏𝑐+𝜃)𝑠
           (A9) 

𝑐(𝑠) =   𝐾𝑐(𝜏𝐷𝑠 +
1

𝜏𝐼𝑠
+ (

𝜏𝐷

𝜏𝐼
+ 1))          (A10) 

 

 

 


