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Article Highlights  

• Classical controllers have been implemented for the cumene process with much 

uncertainty 

• IMC controller is designed for cumene production and is compared with the ZN tuning 
controller 

• It is identified that the PI controller is apt for this specific cumene production process 

• PSO-PI controller is designed to analyze performance with evolutionary computation 

techniques 

 
Abstract  

Cumene is a precursor for producing many organic chemicals and is thinner 

in paints and lacquers. Its production process involves one of the large-scale 

manufacturing processes with complex kinetics. Different classical control 

strategies have been implemented and compared in this process for the 

cumene reactor. As a system with large degrees of freedom, a novel 

approach for extracting the state space model from the COMSOL 

Multiphysics implementation of the system is adopted here. Internal Modern 

Control (IMC) based PI and PID controllers are derived for the system. The 

system is reduced to the FOPDT and SOPDT model structure to derive the 

controller setting using Skogestad half rules. The integral time is modified 

for excellent set point tracking and faster disturbance rejection. From the 

analysis, it can be stated that the PI controller suits more for this specific 

process. The particle swarm optimization (PSO) algorithm, an evolutionary 

computation technique, is also used to tune the PI settings. The PI 

controllers with IMC, Zeigler Nichols, and PSO tuning are compared, and it 

can be concluded that the PSO PI controller settles at 45 s without any 

oscillations and settles down faster for the disturbance of magnitude 0.5 

applied at t = 800 s. However, it is computationally intensive compared to 

other controller strategies. 

Keywords: IMC PI, IMC PID, Skogestad half rule, Zeigler Nichols, PSO 
PI. 

 
 

PID (Proportional-Integral-Derivative) controller is 

the widely adopted control strategy in the industry due 

to its simplicity in  design  and  robustness.  Besides,  it  
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can be employed in many processes with wide 

operating conditions. Even though the PID controller 

owns only three design parameters, finding suitable 

values (settings) for them without a systematic method 

is difficult. A visit to a process industry will reveal a high 

count of poorly tuned PID controllers. The scope of the 

systematic approach for developing classical 

controllers with different tuning mechanisms to the 

cumene reactor in the cumene plant in HOCL, Kochi, is 

analyzed in this study. 

Sigurd Skogestad has introduced analytic rules 

for reducing the model and tuning the PID controller [1]. 

Previous   work   in   this   area   includes   Ziegler   and 
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Nichol’s [2]. classic study and discussion on IMC PID-

tuning mechanism by Rivera et al. [3]. For integrating 

processes, the Ziegler–Nichols settings produce good 

disturbance rejection, but in the case of processes with 

dominant delay, they produce quite poor performance 

and aggressive settings [4—6]. On the other hand, the 

analytically derived IMC settings by Rivera et al. [3] 

have a weak disturbance rejection for integrating 

processes [6—7]. Still, they are robust and have 

excellent setpoint change responses. In a 

multidimensional space, a great number of particles 

move around in the PID controller with a basic PSO 

technique introduced by Kennedy and Eberhart [7], with 

each particle memorizing its vector of position and 

velocity, as well as the time at which it reached its peak 

degree of fitness [8]. PSO starts with a random 

population and updates it to find optimal solutions. PSO 

has the advantage of requiring no evolution operators, 

such as mutation and crossover operators, and it does 

not necessitate the adjustment of many free 

parameters [9,10]. Farimah et al. [11] have discussed 

the optimization of the cumene process with statistical 

and genetic algorithm-based methods. Some 

researchers discuss artificial intelligence and machine 

learning approaches in chemical processes, especially 

the cumene production process [12—14].  

In this work, authors have derived PID controllers 

[15] for studying the disturbance rejection and setpoint 

tracking of the cumene reactor, which is designed as a 

four-layer fixed bed catalytic reactor [16,17]. The major 

difficulty in the analysis is the availability of a system 

model for the process with high degrees of freedom 

[18,19]. The state space model of the system for the 

analysis is obtained from the COMSOL design of the 

system by MATLAB Livelink [20—22]. The classical PI 

and PID controllers based on Internal Model Control 

(IMC) are derived based on analytical rules [23,24]. P, 

PI, and PID controllers based on Zeigler Nichols tuning 

are developed as the system's basic controller for 

comparison [25]. PID controller based on Particle 

Swarm Optimisation is derived from studying the 

advantage of the evolutionary algorithm approach [26].  

The major works included in the paper are: 

Derivation of system model for the plant (cumene rector 

in HOCL, Kochi) from the state matrices obtained from 

COMSOL design [14]. Design of PI and PID controllers 

for the system using analytical rules and comparison. 

Design of IMC P, PI, and PID controller based on 

Zeigler Nichols tuning. PI controller design with particle 

swarm optimization and comparison with other 

controllers.  

The paper is structured as follows. The first 

section details the cumene production process and 

state space model of the reactor. The second section 

derives the PI and PID controllers design using 

analytical rules. P, PI, and PID controllers with Zeigler 

Nichols tuning are discussed in the following section. 

The following section explains the PI controller based 

on an evolutionary algorithm. The simulation results 

and comparative studies are also presented. The 

concluding comments are marked in the last section. 

 
STATE MODEL OF THE CUMENE PROCESS 

Cumene Production Process Description 

The fundamental reaction in the cumene 

production process in the cumene plant is an alkylation 

process in which benzene and propylene react to form 

cumene in the presence of an acidic catalyst [20,27]. 

HOCL set up a cumene plant employing SPA catalyst 

in 1983 at Kochi. The used packed bed reactor has four 

layers of solid phosphoric acid beds [20,28]. 

The principal reaction is expressed as: 

( )C H C H CH CH3 6 6 6 3 2
+ →    (1) 

The simplified model of the reactor is given by 

Eqs. 2—4. 

The mass balance equations are: 

( ) ( )

( ) ( )

( )

B B
b g B B

P P
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C C
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 = − + − 

 

 
 = − + − 

 

 
 = − + 

 

 (2) 

where 𝐴𝑖𝑛𝑡 is the inner cross-sectional area of the 

reactor, 𝑀 is the mass flow rate, 𝑀𝑤𝑖 is the molar 

weight of the ith component, 𝑟𝑖 is reaction rate of ith 

species, ∈𝑏 is catalytic bed void fraction, 𝜌𝑔 is gas 

phase density and 𝑤𝐵 , 𝑤𝑃 and 𝑤𝐶 are the mass 

fractions of benzene, propylene, and cumene, 

respectively. 

The reactor energy balance equation is: 

( )( )

( ) ( )

b g Pmix b c Pcat Pmix

Shell c r

dT M T
C C C

dt A z

U
T T r H

A

int

int

1 




 + − = −



+ − + −

 (3) 

where ∈𝑏 is the catalytic bed void fraction, 𝜌𝑔 is the gas 

phase density, 𝐶𝑃𝑚𝑖𝑥  is the specific heat of the mixture, 

𝜌𝑐 is the catalytic pellet density, 𝐶𝑃𝑐𝑎𝑡 is the specific heat 

of the catalyst, 𝜌𝑐 is catalytic pellet density, 𝐴𝑖𝑛𝑡 is the 

inner cross-sectional area of the reactor, 𝑀 is the mass 

flow rate, 𝑈 is the heat transfer coefficient, 𝑇𝑆ℎ𝑒𝑙𝑙 is the 

reactor shell side temperature  and 𝛥𝐻𝑟 is the enthalpy 

of the reaction. 
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The rate of reaction is: 

( )C c br r1 11 = −     (4) 

where 

RT
B Cr kw w k e

13.28

1  and 3500
−

= =    (5) 

𝜌𝑐 is catalytic pellet density, ∈𝑏 is catalytic bed void 

fraction, 𝜂1 is reaction efficiency 𝑤𝐵  𝑎𝑛𝑑 𝑤𝐶 are mass 

fractions of benzene and cumene, R is the universal gas 

constant, and 𝑇 is the absolute temperature. 

As a system with a large amount of uncertainty, it 

is very difficult to extract the state space model of the 

system. Besides, the system is represented by 

nonlinear partial differential equations, making the 

solution derivation more tedious. Incorporating the 

parameters from the studied plant, the system has been 

implemented in COMSOL Multiphysics to extract state 

transition matrices of the system [14]. 

Extraction of Model from COMSOL Multiphysics using 
Matlab Livelink 

For many chemical processes, the state space 

modeling of the system is not available because of the 

high degrees of freedom. The COMSOL Multiphysics 

modeling of the reactor will help with the performance 

analysis and optimization of specific parameters [20]. A 

novel approach for extracting the state space matrices 

from COMSOL is utilized here. The state space 

matrices of the cumene production process have been 

obtained from the COMSOL design using MATLAB 

Livelink. The Continuous-time state-space model 

obtained has 11493 DOF. The system has been 

reduced to a 4th order system using model order 

reduction. The parameters used to simulate the model 

are listed in Table 1. 

 

Table 1. Parameters used for simulation. 
Parameters Unit for simulation 

Height of the reactor 15.3 m 

Diameter of the reactor 1.5 m 

Diameter of the catalyst particle 1 mm 

Density of catalyst particle 58000 kg/m3 

Porosity of catalyst particle 0.75 

Initial solid height 150 mm 

Bed porosity 0.5 

Inlet feed velocity 0.8 m/s 

Inlet feed composition (𝐶6𝐻6, 𝐶3𝐻8, 𝐶3𝐻6) 8:2:1 

Inlet feed temperature 316 K 

Inlet pressure 32.9 atm 

 

The state space matrices obtained for the cumene 

production process after model order reduction are 

given in Eq. 6: 

x x x

x x x
A

x x

x x

7 10 6

5 6 10

5 5

5 6

0.5409 5.304 10 1.52 10 1.027 10

1.939 10 0.5077 1.96 10 3.858 10

0.00373 1.527 10 0.4719 1.5 10

1.021 10 0.002405 1.947 10 0.4492

− − −

− − −

− −

− −

 −
 
− − − =
 − − −
 

−  
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−

 
 
 =
 
 
  

 

17 17 18 181.878 10 2.291 10 9.192 10 5.657 10C x x x x− − − − =  
 

 0D =  

 
INTERNAL MODEL CONTROL-BASED PI AND PID 

CONTROLLERS 

The simple two-step procedure proposed by 

Sigurd Skogestad [1] has been adopted to design a 

controller for the cumene production process. The 

tuning rules should be well-motivated for a good 

controller, with a preference for model-based and 

analytically determined tuning rules. They should be 

simple to remember. They should be able to handle a 

wide range of tasks. The Internal Model Control PID, 

which satisfies the objectives of a good PID controller, 

provides the rules for system model reduction and 

design of the PID controller. Figure 1 shows the packed 

bed reactor structure and the system with feedback 

control.  Here 𝑢 is the manipulated input, 𝑑 is the 

disturbance, 𝑦 is the controlled output and 𝑦𝑠 is the 

setpoint for controlled output. The process transfer 

function is represented by (𝑠) =
𝛥𝑦

𝛥𝑢
 , controller feedback 

is represented as 𝑐(𝑠). 𝛥, the deviation of the variables 

and 𝑠, the laplace variables are neglected to simplify the 

notation. 

Using the proposed Skogestad half rule, the 

system's first and second-order plus delay model is 

derived. The controller settings can be derived based 

on the model. If we consider the first-order model plus 

delay model, it will result in PI controller settings, and if 

we start from the second-order plus delay model, PID 

controller settings can be obtained.  

The PID settings are derived for the series form of 

PID controller as follows: 

( ) ( )1

1

1
1c Dc s K s

s






 +
= + 

 

   (7) 

( ) ( )( )2

1 1

1

1c
D D

K
c s s s

s
   


= + + +   (8) 

Step 1: Process model approximation 

The model approximation includes the approxi- 
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Figure 1. System with feedback control. 

 

mation of the original model to a first- or second-order 

plus time delay model, 𝑔(𝑠). Skogestad half rules 

approximate first order plus dead time (FOPDT) and 

second order plus dead time (SOPDT) systems. For a 

system to apply Skogestad half rules, the denominator 

should be in terms of  𝜏s, and a dominant time constant 

should exist (𝝉𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≥ 1.5𝝉𝑛𝑒𝑥𝑡 𝑙𝑎𝑟𝑔𝑒𝑠𝑡) and the system 

should be stable. The parameters that need to be 

estimated for the model approximation are planted gain 

K, dominant lag time constant (𝜏 in case FOPDT and 𝜏1 

in case of SOPDT), time delay (dead time) 𝜃, second-

order lag time constant 𝜏2, 

The approximate first order plus deadtime 

(FOPDT) model can be represented as 

1

sKe

s





−

+
     (9) 

The parameters are obtained as follows: 

higher orderK K=  

largest largest0.5 next  = +  

largest0.5 next higher order   = + +  

Approximated model after substituting the 

parameters is: 

33 10.9424.26 10

2.29 1

sx e

s

− −

+
    (10) 

Similarly, the approximate second-order plus 

deadtime model can be represented as: 

( ) ( )1 21 1

sKe

s s



 

−

+ +
    (11) 

The parameters are obtained as: 

higher orderK K=  

1 largest =  

2 largest second largest0.5next next  = +  

second largest0.5 next higher order   = + +  

Approximated model after substituting the 

parameters is: 

( ) ( )

33 8.8974.26 10

2.23 1 3.105 1

sx e

s s

− −

+ +
   (12) 

Step 2: Internal model control based PID tuning 

In this session, PI and PID controllers are derived 

for the FOPDT and SOPDT system using the direct 

synthesis method or the internal model control 

approach[1,3].  

From the comparison of Eq. A9 and A10 

(Supplementary materials), the parameters can be 

obtained as: 

( )
1

2 1 1

1
; ;D c

c

K
K


   

 
= = =

+
   (13) 

The parameter values are obtained from the 

model, and the response is obtained for various tuning 
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values. The best tuning value is identified, and the 

integral terms are varied to obtain the best setpoint 

tracking and disturbance rejection. 

 
P, PI, AND PID CONTROLLERS USING ZEIGLER 

NICHOLS TUNING 

Ziegler-Nichols tuning is applied to the FOPDT 

model of the process to obtain the system's step 

response. The reaction curve process identification 

procedure is used to identify the parameters for P, PI, 

and PID settings. The inflection point is identified, and 

the tangent is plotted in the reaction curve. The values 

obtained are effective delay, 𝐷𝑒, process reaction rate, 

𝑅𝑝 and unit reaction rate, 𝑅𝑢; these values are used for 

parameter setting. Parameter settings from the process 

reaction curve for P, PI, and PID controllers are given 

in Table 2. 

Table 2. PID setting from process reaction curve. 

Type 𝐾𝑐 𝑇𝑖 𝑇𝑑 

P 1/𝑅𝑢𝐷𝑒 - - 

PI 0.9𝑅𝑢𝐷𝑒 3.33𝐷𝑒 - 

PID 1.2/𝑅𝑢𝐷𝑒 2𝐷𝑒 0.5𝐷𝑒 

 
PSO PID CONTROLLER FOR THE SYSTEM 

An evolutionary algorithm for PI tuning is 

introduced to compare the performance in settling time 

and rejection of disturbance with that of analytical rules. 

Particle swarm optimization algorithm, also known as 

bird swarm foraging algorithm, is used here for tuning 

the PI parameters, in which the idea originated from the 

study of the predation behavior of birds or fish. The 

particle swarm algorithm simulates so that the birds in 

the flock are considered massless particles. The 

attributes of each particle include position and velocity. 

Each particle searches for the optimal solution 

separately in the search space, determines the fitness 

value through the fitness function to evaluate the quality 

of the current position, and records the optimal solution. 

Particles are evolved by competition and corporation 

among themselves through generations. The particles 

adjust their speed and position according to the local 

and global optimal solutions. The analysis depicts the 

importance of computational techniques in controller 

design. The PSO algorithm to tune the PI parameter 

based on the best position and velocity is given in 

Figure 2. 

PSO algorithm 

The velocity of the particle: 

( ) ( )1 1 1

1 1 2 2

k k k k
id id id id id idw c r pbest x c r gbest x  − − −= + − + −  (14) 

Position of the particle: 

1 1k k k
id id idx x − −= +     (15) 

where, 

𝑣𝑖𝑑 =velocity of the ith particle 

𝑥𝑖𝑑 =position of the ith particle 

𝑘 =  discrete time constant 

𝑖𝑑= particle index 

𝑝𝑏𝑒𝑠𝑡𝑖𝑑=best position found by the ith particle 

𝑔𝑏𝑒𝑠𝑡𝑖𝑑 = best position found by the swarm 

𝑤= inertia factor 

𝑐1, 𝑐2 = acceleration constant 

𝑟1, 𝑟2= random numbers [0,1] 

 
Figure 2. PSO algorithm. 

 
SIMULATION RESULTS 

IMC-based PI and PID controllers 

The PI and PID controllers for the system with 

different tuning parameter values are designed. 

Figure 3 shows the PI controller with three different 

tuning parameters.𝜏𝑐=0, 𝜏𝑐=1, and 𝜏𝑐=1.5. From the 

analysis, it can be identified that the PI and PID 

controllers with 𝜏𝑐=1.5 shows better disturbance 

rejection and setpoint tracking. 
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Figure 3. (a) PI and (b) PID controller with different tuning 

parameters. 

To improve the disturbance rejection, the rule for 

an integral term is modified in the proposed IMC PI 

tuning. Figure 4 shows the effect of changing the 

integral time for PI-control of the system with 

Kc =9.63x1033. The setpoint change is given at t=0 s, 

and a load disturbance of 0.5 magnitude is applied at     

t = 800 s. The integral time has given the values as 𝜏1, 

ϴ, 2ϴ, 4 s,3 s, and 2 s. 

Interpretation of PI controller output 

𝝉𝑰 =𝝉𝟏=3.29 s: excellent setpoint tracking and fast 

settling for a load disturbance. 

𝝉𝑰 =2𝜽: setpoint response is poor and slow settling 

time for load disturbance. 

𝝉𝑰 = 𝜽 : even quicker settling and reaction to 

setpoints (and robustness).  

𝝉𝑰 = 𝟒𝒔: excellent setpoint tracking and faster 

settling time. 

𝛕𝐈 =  3 s: good setpoint tracking and faster settling 

time. 

𝝉𝑰= 𝟐 𝒔: response is poor with slow settling time. 

 

 

Figure 4. PI-control of the system with different integral times. 𝐾𝑐  =9.63x1033, change in setpoint is at t = 0 s and load disturbance is at     

t = 800 s. 

 

Table 3. Disturbance rejection and setpoint tracking for various values of integral time𝜏𝐼 for PI controller. 

Type Integral time Unit setpoint change at t=0s Load Perturbation of magnitude 10 at t=800s 

𝑡𝑝 (s) 𝑡𝑠 (s) 𝑀𝑝 (%) 𝜖𝑠𝑠 𝑡𝑝 (s) 𝑡𝑠 (s) 𝑀𝑝 (%) 𝜖𝑠𝑠 

P
ro

p
o

s
e

d
  
P

I 

𝜏𝐼=𝜏1 0 45 0 0 0 38 0 0 

𝜏𝐼=2𝜃 0 600 0 0 0 520 0 0 

𝜏𝐼=𝜃 0 350 0 0 0 60 0 0 

𝜏𝐼=4s 0 75 0 0 0 60 0 0 

𝜏𝐼=3s 25 45 1.5% 0 30 40 2% 0 

𝜏𝐼=2𝑠 21 110 28% 0 20 100 14% 0 
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A good trade-off between disturbance response 

and robustness is obtained by selecting the integral 

time. 𝝉𝑰 = 𝝉𝟏, for the above system. 

In the proposed IMC PID tuning, the rule for the 

integral term is modified to improve the disturbance 

rejection. Figure 5 shows the effect of changing the 

integral time for PID-control of the system with Kc 

=5.03x1032. The setpoint change is given at t=0s, and a 

load disturbance of 0.5 magnitude is applied at t = 800 

s. The integral time has given the values as 𝜏1, ϴ, 2ϴ, 4 

s,3 s, and 2 s. 

 
Figure 5. PID control of the system with different integral times. 

𝐾𝑐  = 9.63x1033, change in setpoint is at t = 0 s, and load 

disturbance is at t = 800 s. 

Peak time 𝑡𝑝, settling time 𝑡𝑠, peak oversoot 𝑀𝑝, 

and steady-state error 𝜖𝑠𝑠 corresponding to the 

disturbance rejection and setpoint tracking for the PID 

controller are shown in Table 4. 

Interpretation of PID controller output 

𝜏𝐼 =𝜏 1 = 2.203 s: poor response with slow 

oscillations. 

𝜏𝐼 = 2𝜃: slow setpoint response and slow settling. 

𝜏 𝐼= 𝜃: even faster settling and setpoint response 

(and robustness).  

𝜏 𝐼= 4𝑠: excellent setpoint tracking and faster 

settling time. 

𝜏𝐼  =  3 s:  slow oscillations in setpoint tracking and 

faster settling time. 

𝜏𝐼  = 2𝑠: poor response with oscillations. 

A good trade-off between disturbance response 

and robustness is obtained by selecting the integral 

time. 𝜏𝐼 = 4 𝑠, which corresponds to the above system. 

 

Table 4. Disturbance rejection and setpoint tracking for various values of integral time, 𝜏𝐼  for PID controller. 

Integral Types time Unit setpoint change at t=0s Load Perturbation of magnitude 10 at t=800s 

𝑡𝑝 (s) 𝑡𝑠 (s) 𝑀𝑝 (%) 𝜖𝑠𝑠 𝑡𝑝 (s) 𝑡𝑠 (s) 𝑀𝑝 (%) 𝜖𝑠𝑠 

P
ro

p
o

s
e

d
 P

ID
 

𝜏𝐼=𝜏1 29 160 43% 0 30 150 20% 0 

𝜏𝐼=2𝜃 0 570 0 0 0 600 0 0 

𝜏𝐼=𝜃 0 300 0 0 0 350 0 0 

𝜏𝐼=4s 0 103 0 0 0 95 0 0 

𝜏𝐼=3s 32 100 16% 0 30 70 7% 0 

𝜏𝐼=2𝑠 29 500 57% 0 30 200 26% 0 

 

Comparison of IMC-based PI and PID controllers 

The comparison of PI and PID controllers has 

been done for various values of integral time. Figure 6 

shows that the PI controller has a better-set point 

tracking disturbance rejection than the PID controller. 

Table 5 gives the comparison of PI and PID controllers 

for 𝜏𝐼=𝜏1 and 𝜏𝐼=4 s. The controllers corresponding to 

these values have better setpoint tracking and 

disturbance rejection than other integral values. In the 

PI controller, 𝜏𝐼=𝜏1 gives a better response, where 𝜏𝐼= 

4 s gives a better setpoint tracking disturbance 

rejection, as in the case of the PID controller. 

P, PI, and PID controllers with Zeigler Nichols Tuning 

This analysis uses the parameter obtained from 

the process reaction curve for parameter setting. For 

the controller setting, the unit reaction rate, 𝑅𝑢 and 

effective delay,𝐷𝑒 obtained from the reaction curve are 

used for calculating 𝐾𝑐 , 𝑇𝑖 ,  and 𝑇𝑑  . The parameter 

values obtained for P, PI, and PID controllers are given 

in Table 6. 

A comparative study of P, PI, and PID controllers 

derived from Zeigler Nichols's PID setting is done in this 

section. The response of P, PI, and PID controllers for 

a setpoint change given at 𝑡 = 0 𝑠, and a load 

disturbance of magnitude 0.5 applied at 𝑡 = 800 𝑠  is 

given in Figure 7. It can be identified that the PI 

controller gives better setpoint tracking compared to the 

sluggish nature of the PID controller. The analysis of 

both IMC and Zeigler Nichols controllers depicts that 

the PI controllers best suit the cumene production 

process with improved robustness and stability. 
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Figure 6. Comparison of PI and PID controllers done for various values of integral times, 𝜏𝐼  (a) 𝜏𝐼=𝜏1 , (b) 𝜏𝐼=𝜃, (c) 𝜏𝐼  = 3 s, and  (d)  𝜏𝐼= 4s. 

 

Table 5. Disturbance rejection and setpoint tracking for PI and PID controllers. 

Integral Types time 
Unit Setpoint change at t=0 s Load Perturbation of magnitude 10 at t=800 s 

𝑡𝑝 (s) 𝑡𝑠 (s) 𝑀𝑝 (%) 𝜖𝑠𝑠 𝑡𝑝 (s) 𝑡𝑠 (s) 𝑀𝑝 (%) 𝜖𝑠𝑠 

Proposed PI 
𝜏𝐼=𝜏1 35 45 0 0 0 38 0 0 

𝜏𝐼=4s 0 75 0 0 0 60 0 0 

Proposed PID 
𝜏𝐼=𝜏1 29 160 43% 0 30 150 20% 0 

𝜏𝐼=4s 0 103 0 0 0 95 0 0 

Table 6. Zeigler Nichols PID setting. 

Type 𝐾𝑐 𝑇𝑖(𝑠) 𝑇𝑑(𝑠) 

P 7.538*1031 - - 

PI 6.784*1031 36.437 - 

PID 9.0456*1031 21.884 5.4710 

 

 
Figure 7. P, PI, and PID controller response with Zeigler Nichols 

tuning. 

PI controller with PSO 

The IMC and ZN-based controller simulation 

results emphasize that the PI controller is the apt 

controller for this production process. In this part, the PI 

controller tuning is obtained with particle swarm 

optimization algorithm.50 iterations are considered for 

a population size of 50. The Inertia weight is taken as 

0.9. Other parameters used for optimization are given 

in Table 7. 

Table 7. Variables in PSO. 

Variables Values 

Dimension 2 

Population 50 

Iterations 50 

Cognitive coefficient, c1 0.12 

Social coefficient, c2 1.2 

Inertia weight 0.9 

Comparative study of PSO PI controller with and 
Zeigler Nichols tuning PI controller 

PSO PI controller based on evolutionary algorithm 

gives excellent response for setpoints without any 

oscillations, and settling time is very small for a load 

disturbance compared to Zeigler Nichols and IMC PI 

controllers. A comparison of IMC-PI, PSO, and ZN PI 

controllers   for    setpoint    tracking    and   disturbance 
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rejection comparison is shown in Figure 8. The analysis 

in Table 8 tells that the PSO PI controller settles at 45 s 

without any oscillations and settles down faster for the 

disturbance of magnitude 0.5 applied at t = 800 s. 

 
Figure 8. Setpoint tracking and disturbance rejection comparison 

of the PSO PI controller and comparison with the IMC and ZN PI 

controllers. 

 

Table 8. Setpoint tracking and disturbance rejection comparison. 

Controller 

Types 

Unit setpoint change 

at 𝑡 = 0 𝑠 

Load perturbation of 

magnitude 10 at  𝑡 =

800 𝑠 

𝑡𝑝 

(s) 

𝑡𝑠 

(s) 

𝑀𝑝 

(%) 
𝜖𝑠𝑠 

𝑡𝑝 

(s) 

𝑡𝑠 

(s) 

𝑀𝑝 

(%) 
𝜖𝑠𝑠 

IMC PI 30 45 0 0 0 38 0 0 

ZN PI 0 300 0 0 0 200 0 0 

PSO PI 0 45 0 0 0 38 0 0 

 

The comparative study of different classical 

control strategies shows that the PSO PI controller 

exhibits excellent setpoint tracking and disturbance 

rejection compared to other modeling strategies. 

Besides that, compared to the PID controller, the PI 

controller suites better for this particular process. 

 

CONCLUSION 

 

A comparative study of different classical control 

strategies was done for the cumene production process 

as a part of modeling and control of the process. As a 

system with a large amount of uncertainty, the state 

space matrices of the cumene production process were 

obtained from the COMSOL design using MATLAB 

Livelink. The IMC/based PI and PID controllers are 

derived for the performance analysis, and the controller 

with analytical rules is compared with that of Zeigler 

Nichols tuning and Particle swarm optimization. The 

single-tuning parameter 𝜏𝑐 is adjusted in the PI and PID 

controller with the analytical rules for the optimum 

response. The integral terms can be further adjusted for 

improved disturbance rejection and setpoint tracking. 

The P, PI, and PID controllers of Zeigler Nichols tuning 

are designed with process curve approximations and it 

is found that the PI controller has the best 

approximation. The evolutionary computation 

technique is used for the PID controller setting to check 

the improvement in response. Particle swarm 

optimization is used for the PID tuning, and it is 

observed that the PI controller with PSO shows better 

disturbance rejection and setpoint tracking with a 

minimum settling time. 
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ABBREVIATIONS 

FOPDT First Order Plus Dead Time 

SOPDT Second Order Plus Dead Time 

IMC Internal Model Control 

PSO Particle Swarm Optimization 
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NAUČNI RAD 

UNUTRAŠNJI MODEL KONTROLE 
KUMENSKOG PROCESA KORIŠĆENJEM 
ANALITIČKIH PRAVILA I EVOLUCIONOG 
RAČUNARSTVA 

 
Kumen (izopropilbenzen) je prekursor za proizvodnju mnogih organskih hemikalija i 

razređivača za boje i lakove. Njegov proizvodni proces uključuje složenu kinetiku. 

Različite klasične strategije upravljanja za kumenski reactor su implementirane i 

upoređene u ovom procesu. Za ovakav sistem sa velikim stepenom slobode, usvojen je 

novi pristup za izdvajanje modela u prostora stanja iz programskog paketa COMSOL 

Multiphisics. Za sistem su izvedeni PI i PID kontroleri zasnovani na internoj modernoj 

kontroli (IMC). Da bi se izvelo podešavanje kontrolera korišćenjem Skogestad 

polupravila, sistem je sveden na strukturu modela FOPDT i SOPDT. Integralno vreme je 

modifikovano za praćenje zadate tačke i brže odbacivanje smetnji. Iz analize se može 

konstatovati da PI kontroler više odgovara ovom specifičnom procesu. Algoritam za 

optimizaciju roja čestica (PSO), evoluciona tehnika izračunavanja, takođe se koristi za 

podešavanje PI podešavanja. Upoređeni su PI kontroleri sa podešavanjem IMC, Zeigler 

Nichols i PSO i može se zaključiti da se PSO PI kontroler smiruje za 45 s bez ikakvih 

oscilacija i brže se slaže za poremećaj veličine 0,5 primenjen na t = 800 s. Međutim, on 

je računarski intenzivan u poređenju sa drugim strategijama kontrolera. 

Ključne reči: IMC PI, IMC PID, Skogestad polupravilo, Zeigler Nichols, PSO PI. 

https://doi.org/10.1002/cjce.24072
https://doi.org/10.1016/j.jtice.2016.01.024
https://doi.org/10.1016/S1367-5788(01)00005-0
https://doi.org/10.1016/j.jics.2022.100730
https://doi.org/10.1080/23307706.2022.2146009
https://doi.org/10.1021/ie301386h
https://doi.org/10.1016/j.proche.2015.10.052
https://doi.org/10.1080/23307706.2022.2146009
https://doi.org/10.1016/j.fuel.2020.117829
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.035
https://doi.org/10.1080/03772063.2021.1874839
https://doi.org/10.1016/j.anucene.2021.108675
https://doi.org/10.1002/rnc.5848
https://doi.org/10.2298/CICEQ200911031S
https://doi.org/10.1016/j.cep.2018.06.010
https://doi.org/10.1007/978-3-030-30465-2_23

