Impact of carrier material on fermentative activity of encapsulated yoghurt culture in whey based substrate

Main Article Content

Tanja Ž. Krunić
Nataša S. Obradović
Maja Lj. Bulatović
Maja S. Vukašinović-Sekulić
Kata T. Trifković
Marica B. Rakin

Abstract

The main objectives of this paper were to study the influence of the carrier material used for encapsulation and of bead size to fermentative activity and viability of the dairy starter culture Lactoferm ABY 6. Encapsulation of yoghurt culture in beads with diameter of 1 mm provides better results than encapsulation in beads with larger diameter. Alginate beads and chitosan coated beads have proved to be a strong barrier for nutrients from substrate, so samples with those beads have lower viable cell count, lower titratable acidity and higher pH value after 5h of fermentation at 42 °C, than samples with WPC-alginate beads. Also those beads have significantly (P < 0.05) lower cell leaking, than WPC-alginate beads and lower antioxidant capacity. Encapsulation of yoghurt culture in WPC-alginate carrier with diameter of approximately 1mm provided the best characteristics for fermented product. Samples with these beads have significantly (P < 0.05) higher increase of viable cell number after fermentation, despite of major cell leaking (19.7%). Moreover, sample with these beads have the highest titratable acidity, the lowest pH value after ferment­ation (the best fermentative activity) and the best antioxidant characteristics.

Downloads

Download data is not yet available.

Article Details

How to Cite
Krunić, T. Ž., Obradović, N. S., Bulatović, M. L., Vukašinović-Sekulić, M. S., Trifković, K. T., & Rakin, M. B. (2017). Impact of carrier material on fermentative activity of encapsulated yoghurt culture in whey based substrate. HEMIJSKA INDUSTRIJA (Chemical Industry), 71(1), 41–48. https://doi.org/10.2298/HEMIND150717016K
Section
General

References

K. Kailasapathy, Encapsulation technologies for funct-ional foods and nutraceutical product development, CAB Reviews 4 (2009) 1–19.

M.C. Collado, in Handbook of Probiotics and Prebiotics, 2nd ed., Y.K. Lee, S. Salminen, Eds., Wiley-Interscience Inc, New York, 2008, pp. 257–376.

G.T. Macfarlane, J.H. Cummings, Probiotics and pre¬bio-tics: can regulating the activies of intestinal bacteria benefit health, BMJ 318 (1999) 999–1003.

B. Mombelli, M.R. Gismondo, The use of probiotics in medical practice, Int. J. Antimicrob. Agents 16 (2000) 531–536.

P. De Vos, M.M. Faas, M. Spasojevic, J. Sikkema, Encap-sulation for preservation of functionality and targeted delivery of bioactive food components, Int. Dairy J. 20 (2010) 292–302.

N.P. Shah, R.R. Ravula, Microencapsulation of probiotics bacteria and their survival in frozen fermented dairy desserts, Aust. J.Dairy Technol. 55 (2000) 139-144.

K. Adhikari, A. Mustapha, I.U. Grün, L. Fernando, Via-bility of microencapsulated bifidobacteria in set yogurt during refrigerated storage, J. Dairy Sci. 83 (2000) 1946–

–1951.

K.Y. Lee, T.R. Heo, Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution, Appl. Environ. Microbiol. 66 (2000) 869–873.

M. Chávarri, I. Marañón, M.V. Villarán, Probiotics, Encapsulation Technology to Protect Probiotic Bacteria, E. Rigobelo, Ed., InTech, 2012, DOI: 10.5772/50046.

M. Chávarri, I. Marañón, R. Ares, F.C. Ibáñez, F. Marzo, M.C. Villarán, Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions, Int. J. Food Microbiol. 142 (2010) 185–189.

S. Abbaszadeh, H. Gandomi, A. Misaghi, S. Bokaei, N. Noori, The effect of alginate and chitosan concentra-tions on some properties of chitosan-coated alginate beads and survivability of encapsulated Lactobacillus rhamnosus in simulated gastrointestinal conditions and during heat processing, J. Sci. Food Agr. 94 (2014) 2210–

–2216.

S. Wichchukit, M.H. Oztop, M.J. McCarthy, K.L. McCarthy, Whey protein/alginate beads as carriers of a bioactive component, Food Hydrocolloids 33 (2013) 66–

–73.

B. Ismail, Z. Gu, Whey protein hydrolysates: Current knowledge and challenges, Midwest Dairy Foods Research Center (2010) 55–77. Avalible from: http://

//www.ebook-pedia.com/read/whey-protein-hydrolys-ates-current-knowledge-and-challenges-159691/ (accessed 29 June 2015).

I.T. Kostić, B.D. Isailović, V.B. Đorđević, S.M. Lević, V.A. Nedović, B.M. Bugarski, Electrostatic extrusion as a dis-persion technique for encapsulation of cells and bio-active compounds, Hem. Ind. 66 (2012) 505-517.

Y. Zhou, E. Martins, A. Groboillot, C.P. Champagne, R.J. Neufeld, Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chi-tosan coating, J.Appl. Microbiol. 84(3) (1998) 342–348.

Lj. Vrbaški, S. Markov, Practicum of microbiology, 1st ed., Prometej, Belgrade, 1993.

L. Varga, Effect of acacia (Robinia pseudo-acacia L.) honey on the characteristic microflora of yogurt during refrigerated storage. Int. J. Food Microbiol. 108 (2006) 272–275.

M. Bulatović, T. Krunić, M. Vukašinović-Sekulić, D. Zaric, M. Rakin, Quality attributes of a fermented whey-based beverage enriched with milk and a probiotic strain, RSC Adv. 4 (2014) 55503–55510.

M.J. Chen, K.N. Chen, Applications of probiotic encap-sulation in dairy products, In: Jamileh M. Lakkis, Ed., Encapsulation and Controlled Release Technologies in Food Systems, Wiley-Blackwell, New York, 2007, pp. 83–

–107.

E. Weichselbaum, Probiotics and health: a review of the evidence. Nutr. Bull. 34(4) (2009) 340–373.

W. Grajek, A. Olejnik, A. Sip, Probiotics, prebiotics and antioxidants as functional Acta Biochim. Pol. 52 (2005) 665–671.

L. Tapsell, I. Hemphill, L. Cobiac, C. Patch, D. Sullivan, M. Fenech, Health benefits of herbs and spices: the past, the present, the future, Med. J. Aust. 185 (2006) 4–24.

M.B. Rakin, M.Lj. Bulatović, D.B. Zarić, M.M. Stamen-ković Đoković, T.Ž. Krunić, M.M. Borić, M.S. Vukašinović Sekulić, Quality of fermented whey beverage with milk, Hem. Ind. 70 (2016) 91–98.

A.N. Madhu, N. Amrutha, S.G. Prapulla, Characterization and antioxidant property of probiotic and synbiotic yogurts, Probiotics Antimicrob. Proteins 4 (2012) 90–97.

A. Lourens-Hattingh, B. C. Viljoen, Yogurt as probiotic carrier food, Int. Dairy J. 11 (2001) 1–17.

I. Correia, A. Nunes, I. F. Duarte, A. Barros, I. Delgadillo, Sorghum fermentation followed by spectroscopic tech-niques, Food Chem. 90 (2001) 853–859.

K. Kailasapathy, Survival of free and encapsulated pro-biotic bacteria and their effect on the sensory pro¬perties of yoghurt, LWT – Food Sci. Technol. 39 (2006) 1221–1227.

M. Chavarri, I. Maranon, R. Ares, F.C. Ibanez, F. Marzo, M. Villaran, Microencapsulation of a probiotic and pre-biotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions, Int. J. Food Micro-biol. 142 (2010) 185–189.

W. Krasaekoopt, B. Bhandari, H. Deeth, The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bac-teria, Int. Dairy J. 14 (2004) 737–743.

T.Ž. Krunić, M.L. Bulatović, N.S. Obradović, M.S. Vuka-šinović-Sekulić, M. B. Rakin, Effect of immobilisation materials on viability and fermentation activity of dairy starter culture in whey-based substrate, J. Sci. Food Agric. 96 (2016) 1723–1729.

K. Adhikari, A. Mustapha, I.U. Grün, Survival and meta-bolic activity of microencapsulated Bifidobacterium in stirred yogurt, J.Food Sci. 68 (2003) 275–280.

A. Picot, C. Lacroix, Encapsulation of Bifidobacteria in whey protein-based microcapsules and survival in sti-mulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14 (2004) 505–515.

A.A. Reid, J.C. Vuillemard, M. Britten, Y. Arcand, E. Farn-worth, C.P. Champagne, Microencapsulation of probio¬tic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastrointestinal model, J. Microencapsulation 22 (2005) 603–619.

N.S. Obradović, T.Ž. Krunić, I.D. Damnjanović, M.S. Vuka-sinović-Sekulić, M.B. Rakin, M.P. Rakin, B.M. Bugarski, Influence of Whey Proteins Addition on Mechanical Sta-bility of Biopolymer Beads with Immobilized Probiotics, Tehnika, Novi Materijali (2015) 397–400.

D. Ying, J. Sun, L. Sanguansri, R. Weerakkody, M.A. Augustin, Enhanced survival of spray-dried microencap-sulated Lactobacillus rhamnosus GG in the presence of glucose, J. Food Eng. 109 (2011) 597–602.

Most read articles by the same author(s)